Vpliv ozonirane vode za namakanje na morfološke, bakteriološke in senzorične lastnosti paradižnika ‘Saint-Pierre’, rastočega v Alžiriji

Fouzia BENALI, Nadia RAMDANI

Povzetek


Članek se osredotoča na vpliv ozoniranja vode za namakanje na morfološke, bakteriološke in senzorične lastnosti paradižnika ‘Saint-Pierre’ rastočega v Alžiriji. Rezultati so primerjani s tistimi, kjer je bila voda za namakanje iz vodovoda in ni bila ozonirana, kar je služilo kot kontrola, pri isti sorti paradižnika, gojenega v enakih razmerah. Sadike paradižnika za bile zalivane z vodo, ozonirano različno dolgo in sicer: 10 s, 20 s in 30 s, kar je ustrezalo naborom paradižnikov v poskusu: I (paradižnik pri 10 s), II (paradižnik pri 20 s) III (paradižnik pri 30 s). Zalivanje z ozonirano vodo ni povzročilo poškodb v obliki, kožici in barvi plodov. Ti so bili značilno okrogle oblike, zelo rdeči, čvrsti in z rahlo kislim okusom. V primerjavi s standardom so imeli dobro mikrobiološko stabilnost in dobro organoleptično kakovost, razen okusa tistih, ki so bili zalivani z vodo ozonirano 30 s, za katere je večina ocenjevalcev ocenila, da okus ni značilen, med ostalimi preučevanimi lastnostmi pa ni bilo velikih razlik. Na splošno so rezultati pokazali, da je ozoniranje vode za zalivanje izboljšalo rast, razvoj, vitalnost in pridelek paradižnika brez sprememb tržnih lastnosti plodov. Postopek vzpodbuja uporabo ozonirane vode v kmetijstvu, saj ima veliko dodano vrednost z vidika okolja in ekonomičnosti in bi se lahko splošno uporabljal tudi pri drugih kulturnih rastlinah.

Ključne besede


ozonirana voda; zalivanje; ‘Saint-Pierre’ paradižnik; morfološke, bakteriološke in senzorične lastnosti

Celotno besedilo:

PDF (English)

Literatura


Agassounon Djikpo Tchibozo, M., Gomez, S., Tchobo, F., Soumanou, M., & Toukourou, F. (2012). Essai de conservation de la tomate par la technique de la déshydratation imprégnation par immersion (DII). International Journal of Biological and Chemical Sciences, 6(2), 657‑669. https://doi.org/10.4314/ijbcs.v6i2.10

Ali, M. Y., Sina, A. A. I., Khandker, S. S., Neesa, L., Tanvir, E. M., Kabir, A., Khalil, M. I., & Gan, S. H. (2020). Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease : A review. Foods, 10(1), 45. https://doi.org/10.3390/foods10010045

Bhat, N. A., Wani, I. A., & Hamdani, A. M. (2020). Tomato powder and crude lycopene as a source of natural antioxidants in whole wheat flour cookies. Heliyon, 6(1), e03042. https://doi.org/10.1016/j.heliyon.2019.e03042

Cámara, M., Fernández-Ruiz, V., Sánchez-Mata, M.-C., Díaz, L. D., Kardinaal, A., & Lieshout, M. van. (2020). Evidence of antiplatelet aggregation effects from the consumption of tomato products, according to EFSA health claim requirements. Critical Reviews in Food Science and Nutrition, 60(9), 1515‑1522. https://doi.org/10.1080/10408398.2019.1577215

Cheng, H. M., Koutsidis, G., Lodge, J. K., Ashor, A., Siervo, M., & Lara, J. (2017). Tomato and lycopene supplementation and cardiovascular risk factors : A systematic review and meta-analysis. Atherosclerosis, 257, 100‑108. https://doi.org/10.1016/j.atherosclerosis.2017.01.009

FAOSTAT. (s. d.). Consulté 28 mai 2021, à l’adresse http://www.fao.org/faostat/fr/#compare

García-Alonso, F.-J., García-Valverde, V., Navarro-González, I., Martín-Pozuelo, G., González-Barrio, R., & Periago, M. J. (2020). Tomato. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables (p. 255‑271). Elsevier. https://doi.org/10.1016/B978-0-12-812780-3.00015-5

Graham, T., Zhang, P., Woyzbun, E., & Dixon, M. (2011). Response of hydroponic tomato to daily applications of aqueous ozone via drip irrigation. Scientia Horticulturae, 129(3), 464‑471. https://doi.org/10.1016/j.scienta.2011.04.019

Guo, Z., & Wang, Q. (2017). Efficacy of ozonated water against Erwinia carotovora subsp. carotovora in Brassica campestris ssp. chinensis. Ozone: Science & Engineering, 39(2), 127‑136. https://doi.org/10.1080/01919512.2016.1270744

Guo, Z., Wang, Z., Li, Y., & Wang, Q. (2019). Effect of different concentrations of ozone on in vitro plant pathogens development, tomato yield and quality, photosynthetic activity and enzymatic activities. Ozone: Science & Engineering, 41(6), 531‑540. https://doi.org/10.1080/01919512.2019.1591268

Güzel-Seydim, Z., Bever Jr, P. I., & Greene, A. K. (2004). Efficacy of ozone to reduce bacterial populations in the presence of food components. Food Microbiology, 21(4), 475‑479. https://doi.org/10.1016/j.fm.2003.10.001

Heß, S., & Gallert, C. (2015). Sensitivity of antibiotic resistant and antibiotic susceptible Escherichia coli, Enterococcus and Staphylococcus strains against ozone. Journal of water and health, 13(4), 1020‑1028. https://doi.org/10.2166/wh.2015.291

Horvitz, S., & Cantalejo, M. (2014). Application of ozone for the postharvest treatment of fruits and vegetables. Critical reviews in food science and nutrition, 54(3), 312‑339. https://doi.org/10.1080/10408398.2011.584353

Inter ministerial decree, Official Journal39. (2017, juillet 2). JOURNAL OFFICIEL DE LA REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE. https://www.joradp.dz/FTP/JO-FRANCAIS/2017/F2017007.pdf

Joseph, H., Nink, E., McCarthy, A., Messer, E., & Cash, S. B. (2017). “The Heirloom tomato is ‘In’. Does it matter how it tastes?” Food, Culture & Society, 20(2), 257‑280. https://doi.org/10.1080/15528014.2017.1305828

Landa Fernández, I. A., Monje-Ramirez, I., & Orta Ledesma de Velásquez, M. T. (2019). Tomato crop improvement using ozone disinfection of irrigation water. Ozone: Science & Engineering, 41(5), 398‑403. https://doi.org/10.1080/01919512.2018.1549474

Martínez-Sánchez, A., & Aguayo, E. (2019). Effect of irrigation with ozonated water on the quality of capsicum seedlings grown in the nursery. Agricultural Water Management, 221, 547‑555. https://doi.org/10.1016/j.agwat.2019.05.027

Mitsugi, F., Abiru, T., Ikegami, T., Ebihara, K., & Nagahama, K. (2017). Treatment of nematode in soil using surface barrier discharge ozone generator. IEEE Transactions on Plasma Science, 45(12), 3076‑3081. https://doi.org/10.1109/TPS.2017.2708706

Nethaji, D. K., Suresh, S., Prasanna, J. E. H., Vijayagopal, V., & Ramesh, G. (2020). Development of mango and tomato paste and it’s physico-chemical characterization. International Journal of Scientific Research in Science, Engineering and Technology, 165‑171. https://doi.org/10.32628/IJSRST207537

Nomades, D. C. (s. d.). Météo en Algérie en 2020. Historique Météo. Consulté 19 juin 2021, à l’adresse https://www.historique-meteo.net/afrique/algerie/2020/

Ohashi-Kaneko, K., Yoshii, M., Isobe, T., Park, J.-S., Kurata, K., & Fujiwara, K. (2009). Nutrient solution prepared with ozonated water does not damage early growth of hydroponically grown tomatoes. Ozone: Science & Engineering, 31(1), 21‑27. https://doi.org/10.1080/01919510802587523

Pandiselvam, R., Mayookha, V. P., Kothakota, A., Sharmila, L., Ramesh, S. V., Bharathi, C. P., Gomathy, K., & Srikanth, V. (2020). Impact of ozone treatment on seed germination – A systematic review. Ozone: Science & Engineering, 42(4), 331‑346. https://doi.org/10.1080/01919512.2019.1673697

Pandiselvam, R., Sunoj, S., Manikantan, M. R., Kothakota, A., & Hebbar, K. B. (2017). Application and kinetics of ozone in food preservation. Ozone: Science & Engineering, 39(2), 115‑126. https://doi.org/10.1080/01919512.2016.1268947

Renaud, V. (2003). Tomate. Tous les legumes courants, rares ou méconnus cultivables sous nos climats. Ulmer. Paris, Ulmer, 135‑137.

Rowles, J. L., Ranard, K. M., Applegate, C. C., Jeon, S., An, R., & Erdman, J. W. (2018). Processed and raw tomato consumption and risk of prostate cancer : A systematic review and dose–response meta-analysis. Prostate Cancer and Prostatic Diseases, 21(3), 319‑336. https://doi.org/10.1038/s41391-017-0005-x

Rozpądek, P., Nosek, M., Ślesak, I., Kunicki, E., Dziurka, M., & Miszalski, Z. (2015). Ozone fumigation increases the abundance of nutrients in Brassica vegetables : Broccoli (Brassica oleracea var. italica) and Chinese cabbage (Brassica pekinensis). European Food Research and Technology, 240(2), 459‑462. https://doi.org/10.1007/s00217-014-2372-z

Saini, R. K., Rengasamy, K. R. R., Mahomoodally, F. M., & Keum, Y.-S. (2020). Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases : An update on epidemiological and mechanistic perspectives. Pharmacological Research, 155, 104730. https://doi.org/10.1016/j.phrs.2020.104730

Siti Fadlilah, Adi Sucipto, & Mohamad Judha. (2020). Cucumber (Cucumis sativus) and tomato (Solanum lycopersicum) juice effective to reduce blood pressure. GSC Biological and Pharmaceutical Sciences, 10(1), 001‑007. https://doi.org/10.30574/gscbps.2020.10.1.0246

Walallawita, U. S., Wolber, F. M., Ziv-Gal, A., Kruger, M. C., & Heyes, J. A. (2020). Potential role of lycopene in the prevention of postmenopausal bone loss : Evidence from molecular to clinical studies. International Journal of Molecular Sciences, 21(19), 7119. https://doi.org/10.3390/ijms21197119

Wu, H., Li, W., Wang, T., Rong, Y., He, Z., Huang, S., Zhang, L., Wu, Z., & Liu, C. (2021). α-tomatine, a novel early-stage autophagy inhibitor, inhibits autophagy to enhance apoptosis via Beclin-1 in Skov3 cells. Fitoterapia, 152, 104911. https://doi.org/10.1016/j.fitote.2021.104911

Yang, T., Yang, X., Wang, X., Wang, Y., & Song, Z. (2013). The role of tomato products and lycopene in the prevention of gastric cancer : A meta-analysis of epidemiologic studies. Medical Hypotheses, 80(4), 383‑388. https://doi.org/10.1016/j.mehy.2013.01.005




DOI: http://dx.doi.org/10.14720/aas.2021.117.4.2256

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2021

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941