Izolacija bakterij, ki sproščajo fosfat iz rizosfere kot nadomestek biognojilom
Povzetek
V tleh se velike količine dodanega fosforja hitro spremenijo v netopne oblike tako, da ostane rastlinam raspoložljivega le okrog 0,1 %. Zaradi tega je izkoriščanje v naravi prisotnih fosfat sproščajočih mikroorganizmov nepogrešljiva aktivnost, ki omogoča njihovo uporabo in zmanjšujej dodajanje mineralnega fosforja v kmetijska tla. V raziskavi smo preverili in izolirali 7 bakterij, ki sproščajo fosfat z različnimi indeksi sproščanja od 4,2 do 226,1. Med njimi je bil najučikovitejši izolat PSB31, ki je sproščal tri kalcijev fosfat (Ca3(PO4)2 v velikosti 962 mg l-1, na osnovi molekularnih testov določen kot IMAU61039 soj bakterije iz rodu Bacillus. Ta soj bakterije je generiral nizek pH v raztopini in fosfataze, ki so vključene v mehanizem sproščanja fosforja. Nadalje je poskus v rastlinjaku pokazal, da so vsebovale sejanke paradižnika, ki so rastle v tleh inokuliranih z izolatom PSB31 večjo vsebnost fosforja in mnogo večjo biomaso kot tiste, ki so rastle v tleh brez dodatka PSB31. Izsledki nakazujejo, da bi se izolat PSB31 lahko uporabljal kot biognojilo.
Ključne besede
Celotno besedilo:
PDF (English)Literatura
Barea, J.M. (2015). Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better under-standing of plant-microbiome interactions. Journal of Soil Science and Plant Nutrition, 15, 261-282. https://doi.org/10.4067/S0718-95162015005000021
Chen, Y.P., Rekha, P.D., Arun, A.B., Shen, E.T., Lai, W.A., and Young, C.C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34, 33-41. https://doi.org/10.1016/j.apsoil.2005.12.002
Cordell, D., Drangert, J.-O. and White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change, 19, 292-305. https://doi.org/10.1016/J.GLOENVCHA.2008.10.009
Cao, Y., Fu, D., Liu, T., Guo, G. and Hum Z. (2018). Phosphorus solubilizing and releasing bacteria screening from the rhizosphere in a natural wet-land. Water, 10(2), 195. https://doi.org/10.3390/w10020195
Dey, R. and Raghuwanshi, R. (2020). Comprehensive assessment of growth parameters for screening endophytic bacterial strains in Solanum lycopersicum (Tomato). Heliyon, 6(10), e05325. https://doi.org/10.1016/j.heliyon.2020.e05325
Grayston, S.J., Wang, S., Campbell, C.D. and Edwards, A.C. (1998). Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry, 30, 369-378. https://doi.org/10.1016/S0038-0717(97)00124-7
Hanson, W.C. (1950). The photometric determination of phosphorus in fertilizers using the phosphovanadomolybdate complex. Journal of the Sci-ence of Food and Agriculture, 1, 172-173. https://doi.org/10.1002/jsfa.2740010604
Kumar, A., Maurya, B.R., Raghuwanshi, R., Meena, V.S. and Tofazzal Islam, M. (2017). Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic plain of India. Journal of Plant Growth Regulation, 36(3), 608-617. https://doi.org/10.20546/ijcmas.2017.601.099
Khan, A.A., Jilani, G., Akhtar, M.S., Naqvi, S.M.S. and Rasheed, M. (2009). Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Research Journal of Agriculture and Biological Sciences, 1, 48-58.
Lee, S., Jong-hyuk, L., Young-joon, J. and Won, C. (2020). Development of a structural analysis model for pipe structures to reflect ground condi-tions. Biosystems Engineering, 197, 231-244. https://doi.org/10.1016/j.biosystemseng.2020.06.018
Li, Y., Liu, X., Hao, T. and Chen, S. (2017). Colonization and maize growth promotion induced by phosphate solubilizing bacterial isolates. Interna-tional Journal of Molecular Sciences, 18(7), 1253. https://doi.org/10.3390/ijms18071253
Luu, T., Phi, Q., Nguyen, T., Dinh V., Pham B. and Do T. (2021). Antagonistic activity of endophytic bacteria isolated from weed plant against stem end rot pathogen of pitaya in Vietnam. Egyptian Journal of Biological Pest Control, 31, 14. https://doi.org/10.1186/s41938-021-00362-0
Morales, A., Alvear, M., Valenzuela, E., Castillo, C. and Borie, F. (2011). Screening, evaluation and selection of phosphate-solubilising fungi as potential biofertilizer. Journal of Soil Science and Plant Nutrition, 11, 89-103. https://doi.org/10.4067/S0718-95162011000400007
Mohamed, E.A.H., Farag, A.G. and Youssef, S.A. (2018). Phosphate solubilization by Bacillus subtilis and Serratia marcescens isolated from tomato plant rhizosphere. Journal of Environmental Protection, 9, 266-277. https://doi.org/10.4236/jep.2018.93018
Mendoza-Arroyo, G., Chan, M., Aguila, N., Morales, O., Efraín, R., Solís, C., Chab-Ruiz, A., Cob-Rivera, K., Dzib-Castillo, B., Tun Che, R. and Camacho-Chab, J. (2020). Inorganic phosphate solubilization by a novel isolated bacterial strain Enterobacter sp. ITCB-09 and its application po-tential as biofertilizer. Agriculture, 10(9), 383. https://doi.org/10.3390/agriculture10090383
Nelofer, R., Farzana, B., Nadeem, M., Sania, M., Ammara, H. and Syed, Q. (2015). Isolation phosphorus solubilizing fungus from soil to supplement biofertilizer. Arabian Journal for Science and Engineering, 41, 2131-2138. https://doi.org/10.1007/s13369-015-1916-2
Pearson, D. (1976). General methods determination of phosphate by the Vanado-Molybdate colorimetric method. Churchill Livingstone, Edinburgh.
Sharon, J., Hathwaik, L., Glenn, G.M., Imam, S. and Lee, C.C. (2016). Isolation of efficient phosphate solubilizing bacteria capable of enhancing tomato plant growth. Journal of Soil Science and Plant Nutrition, 16, 525-536. https://doi.org/10.1016/S0168-1923(98)00053-7
Tabatabi, M.A., Bremner, J.M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1(4), 301-307. https://doi.org/10.1016/0038-0717(69)90012-1
TCVN 4046 – 85 (1985). Agricultural soil – Sampling Method. State Committee for Science and Technology, Vietnam (in Vietnamese).
Vyas, P. and Gulati, A. (2009). Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology, 9, 174. https://doi.org/10.1186/1471-2180-9-174
Wu, F., Li, J., Chen, Y., Zhang, L., Zhang, Y., Wang, S., Shi, X., Li, L. and Liang, J. (2019). Effects of phosphate solubilizing bacteria on the growth, photosynthesis, and nutrient uptake of Camellia oleifera Abel. Forests, 10, 348. https://doi.org/10.3390/f10040348
DOI: http://dx.doi.org/10.14720/aas.2022.118.1.2262
Povratne povezave
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- Isolation of phosphate solubilizing bacteria from root rhizosphere to supplement biofertilizer
Avtorske pravice (c) 2022 Thi Thuy NGUYEN, The Anh LUU, Quang Trung DO
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941