Primer uporabe Griffiths-Taylorjevih diagramov za prikaz podnebnih sprememb, pomembnih za kmetijstvo
Povzetek
Podnebje izrazito določa značilnosti kmetijstva glede na ugodne razmere za razvoj rastlin in živali. Podnebne spremembe imajo na kmetijstvo velik vpliv, za učinkovito prilagajanje pa potrebujemo vsaj analizo dosedanjih podnebnih sprememb. Pri tem je letna skala meteoroloških spremenljivk precej groba, veliko več informacij dobimo iz mesečne skale, na primer pri uporabi bioklimatskih indeksov in diagramov. Z Griffiths-Taylorjevimi diagrami, kjer posamezna točka prikazuje povprečno mesečno vrednost temperature in relativne vlage ali padavin, smo prikazali časovne spremembe 30-letnih povprečij (od 1961 do 2020) za šest podnebnih postaj. Podnebne spremembe vidimo iz oblike diagrama, vidno je povišanje povprečnih mesečnih temperatur zraka, zmanjšanje povprečne relativne vlage in spremenjeni vzorci padavin. Z vrisanimi ugodnimi razmerami za določeno rastlinsko/živalsko vrsto pridobi diagram ekološko vrednost. Prikazali smo spremembe razmer za razvoj breskove muhe (Ceratitis capitata (Wiedemann, 1824)) in rast sladkega krompirja (Ipomoea batata L.). Za breskovo muho so se razmere zaradi višjih temperatur izboljšale predvsem na hladnejših lokacijah. V Murski Soboti, ki ima edina primerne razmere za rast sladkega krompirja, se obdobje z ugodnimi razmerami podaljšuje, v zadnjih dveh obdobjih se julija in avgusta pojavijo tudi idealne razmere. V nadaljnjih raziskavah priporočamo analizo vremensko ekstremnih let, ki podajo dodatne informacije o variabilnosti razmer.
Ključne besede
Celotno besedilo:
PDFLiteratura
Arnell, N.W., Freeman, A. (2021). The effect of climate change on agro-climatic indicators in the UK. Climatic Change, 165, 40. https://doi.org/10.1007/s10584-021-03054-8
ARSO. (2017). Ocena podnebnih sprememb v Sloveniji do konca 21. stoletja: Povzetek temperaturnih in padavinskih povprečij. Pridobljeno s: OPS21_Porocilo.pdf (gov.si)
ARSO. (2021). Agencija republike Slovenije za okolje (ARSO), izpis meteoroloških podatkov iz baze podatkov za obdobje 1961-2020. Pridobljeno s: http://meteo.arso.gov.si/met/sl/climate
Badr, G., Hoogenboom, G., Abouali, M., Moyer, M., Keller, M. (2018). Analysis of several bioclimatic indices for viticultural zoning in the Pacific Northwest. Climate Research, 76, 203–223. https://doi.org/10.3354/cr01532
Belehu, T., Hammes, P.H. (2004). Effect of temperature, soil moisture content and type of cutting on establishment of sweet potato cuttings. South African Journal of Plant and Soil, 21, 85–89. https://doi.org/10.1080/02571862.2004.10635028
Bocci, M., Smanis, T. (2019). Assessment of the impacts of climate change on the agriculture sector in the southern Mediterranean: foreseen developments and policy measures. Union for the Mediterranean, 35 str. Pridobljeno s: https://ufmsecretariat.org/wp-content/uploads/2019/04/Climate-Change-impact-on-Agriculture.pdf
Brandenberger, L. P., Shrefler, J., Rebek, E. J., Damicone, J. (2014). Sweet potato production. Division of Agricultural Sciences and Natural Resources. Oklahoma Cooperative Extension Service HLA-6022: 1-8.
Ceglar, A., Zampieri, M., Toreti, A., Dentener, F. (2019). Observed northward migration of agro-climate zones in Europe will further accelerate under climate change. Earth’s Future, 7, 9, 1088-1101. https://doi.org/10.1029/2019EF001178
Christie, N. J. (1993). „Pioneering for a civilized world:“ Griffith Taylor and the ecology of geography. Scientia Canadensis, 17, 1-2, 103–154. https://doi.org/10.7202/800366ar
Egartner, A., Lethmayer, C., Gottsberger, R. A., Blümel, S. (2018). Monitoring activities on invasive fruit flies (Tephritidae, Diptera) in Austria. XI European Congress of Entomology Naples, Italy: 02-06 Jul. 2018, str. 153-154. https://doi.org/10.1055/s-0037-1606308
Gajanayake, B., Reddy, K., Shankle, M. (2015). Quantifying growth and developmental responses of sweetpotato to mid- and late-season temperature. Agronomy Journal, 107(5), 1854-1862. https://doi.org/10.2134/agronj14.05455
Gilioli, G., Sperandio, G., Colturato, M., Pasqualis, S., Gervasio, P., Wilstermann, A., Dominic, A.R., Schrader, G. (2021). Non-linear physiological responses to climate change: the case of Ceratitis capitata distribution and abundance in Europe. Biological Invasions, https://doi.org/10.1007/s10530-021-02639-9
Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., Wiltshire, A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical transactions of the Royal Society of London, Series B-Biological sciences, 365, 2973-2989. https://doi.org/10.1098/rstb.2010.0158
Karoglan, M., Telišman Prtenjak, M., Šimon, S. in sod. (2018). Clasification of Croatian winegrowing regions based on bioclimatic indices. E3S Web Conference, 50, 01032. https://doi.org/10.1051/e3sconf/20185001032
Kim, Y.C. (1961). Effects of thermoperiodism on tuber formation in Ipomoea batatas under controlled conditions. Plant Physiology, 36(5), 680-684. https://doi.org/10.1104/pp.36.5.680
Knox, J., Morris, J., Hess, T. (2010). Identifying future risks to UK agricultural crop production: Putting climate change in context. Outlook on Agriculture, 39( 4), 249-256. https://doi.org/10.5367/oa.2010.0016
Lencha, B., Birksew, A., Dikale, G. (2016). The evaluation of growth performance of sweet potato (Ipomoea batatas ‚Awassa‘) by using different type of vine cuttings. Food Science and Quality Management, 54, 55-65.
Loretan, P.A., Bonsi, C.K., Mortley, D.G., Wheeler, R.M., Mackowiak, C.L., Hill, W.A., David, P.A. (1994). Effects of several environmental factors on sweetpotato growth. Advances in Space Research, 14, 277–280. https://doi.org/10.1016/0273-1177(94)90308-5
Marshall, A. (1980). Griffith Taylor’s correlative science. Australian Geographical Studies, 18, 184– 193. https://doi.org/10.1111/j.1467-8470.1980.tb00367.x
Mu, T.H., Li, P.G. (2019). Sweet potato: origin and production. In Mu T.H., Singh, J. Sweet potato: Chemistry, Processing and Nutrition, Academic Press, 5-25. https://doi.org/10.1016/C2016-0-05204-X
Noce, S., Caporaso, L., Santini, M. (2020). A new global dataset of bioclimatic indicators. Scientific Data, 7, 398. https://doi.org/10.1038/s41597-020-00726-5
O’Brien, C. (2015). Governing climate: Griffith Taylor’s climographs and contemporary blind spots. Learning Communities, Special Issue: Objects of Governance, 15, 26-31. https://doi.org/10.18793/LCJ2015.15.05
Olesen, J.E., Carter, T.R., Díaz-Ambrona, C.H. in sod. (2007). Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change, 81, 123-143. https://doi.org/10.1007/s10584-006-9216-1
Paneque Ramirez, G. (2021). Cultivation harvesting and storage of sweet potato products. Pridobljeno s: http://www.fao.org/3/T0554E/T0554E14.htm
Raymundo, R., Asseng, S., Cammarano, D., Quiroz, R. (2014). Potato, sweet potato, and yam models for climate change: a review. Field Crops Research, 166, 173–185. https://doi.org/10.1016/j.fcr.2014.06.017
Rivas-Martínez, S., Sáenz, S., Penas, A. (2011). Worldwide bioclimatic classification system. Global Geobotany, 1. 1-634+4 Maps, doi:10.5616/gg110001
Rot, M., Jančar, M., Bjeliš, M. (2015). Razširjenost breskove muhe - Ceratitis capitata Wiedemann na območju Slovenske in Hrvaške Istre. V: Izvlečki referatov 12. Slovenskega posvetovanja o varstvu rastlin z mednarodno udeležbo (ur. Trdan S.), Ptuj, 3.-4. marec 2015. Ljubljana, Društvo za varstvo rastlin Slovenije, 69-75.
Rusjan D., Koruza-Korošec Z. (2003). Mikrorajonizacija vinorodnega okoliša Goriška Brda. Zbornik Biotehniške Fakultete Univerze v Ljubljani, 81, 357–367.
Somasundaram, K., Mithra, V.S.S. (2008). Madhuram: A simulation model for sweet potato growth. World Journal of Agricultural Research, 4, 241–254.
Šlosár, M., Hegedusova, A., Hegedűs, O., Mezeyova, I., Timoracká, M. (2020). The effect of cultivar on selected quantitative and qualitative parameters of sweet potatoes (Ipomoea batatas L.) grown in Slovak republic. Journal of Central European Agriculture, 21, 344-353. https://doi.org/10.5513/JCEA01/21.2.2684
Tarman, K. (1992). Osnove ekologije in ekologija živali. Ljubljana, Državna založba Slovenije, 547 str.
Taylor Griffith, T. (2021). Professor Griffith Taylor collection, between 1900 and 1960. Pridobljeno s: http://nla.gov.au/nla.obj-149708712
Valenzuela, H., Fukuda, S., Arakaki, A. (2020). Sweetpotato Production Guides for Hawaii. Pridobljeno s: http://www2.hawaii.edu/~hector/prod%20guides%20fold/swpotato.html
Villordon, A., Clark, C., Ferrin, D., LaBonte, D. (2009). Using growing degree days, agrometeorological variables, linear regression, and data mining methods to help improve prediction of sweetpotato harvest date in Louisiana. HortTechnology, 19, 133-144. https://doi.org/10.21273/HORTSCI.19.1.133
Winlow, H. (2009). Mapping the contours of race: Griffith Taylor’s zones and strata theory, Geographical research, 47, 4, 390-407. https://doi.org/10.1111/j.1745-5871.2009.00604.x
Žežlina, J. (2018). Pojavljanje breskove muhe (Ceratitis capitata [Wiedemann], Diptera, Tephritidae) na kakiju (Diospyros kaki L.) na štirih lokacijah na Primorskem. Magistrsko delo. Ljubljana, Biotehniška fakulteta, Oddelek za agronomijo: 51 str.
DOI: http://dx.doi.org/10.14720/aas.2022.118.1.2282
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2022 Tjaša POGAČAR, Zoja GAŠPARIČ, Lučka KAJFEŽ BOGATAJ, Zalika ČREPINŠEK
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941