Tretiranje listov pistacije (Pistacia vera ‘Ahmadaghaii’) s silicijem poveča njihovo antioksidativno sposobnost v mraznem stresu
Povzetek
Mrazni stres omejuje fotosintezo in rast rastlin, kar lahko pripišemo povečanju oksidativnih poškodb zaradi zmrzovanja. V raziskavi sta bili spremljani peroksidacija lipidov in oksidativne poškodbe listov pistacije (Pistacia vera ‘Ahmadaghaii’) izpostavljenih mraznem stresu in foliarnem tretmaju s silicijem (Si). Foliarna uporaba silicija je značilno zmanjšala učinke mraza na ravni relativne vsebnosti vode (RWC), kar je povzročilo povečanje sveže mase poganjkov (SFM). Dodatno je predtretiranje s Si povzročilo značilno zmanjšanje izgube listne površine zaradi zmrzovana. Med okrevanjem po mraznem stresu je bila opazno povečana aktivnost fenilalanin amonik-liaze (PAL). Zaradi nespremenjene vsebnosti fenolov v listih po aplikaciji Si je maloverjetno, da bi foliarno dodani Si neposredno vplival na aktivnost PAL. Mrazni stres je povzročil velike poškodbe membran, ki so bile ocenjene s peroksidacijo lipidov, a jih je uporaba Si značilno zmanjšala zaradi učinkovitega antioksidativnega delovanja superoksid dismutaze (SOD) in peroksidaze (POD). Kljub povečanju aktivnosti POD v razmerah zmrzovanja, so s Si-obravnavane rastline kopičile največje količine vodikovega peroksida (H2O2), ki je lahko deloval kot signal za sposobnost okrevanja po poškodbah zaradi zmrzovanja. Ugotovljena je bila pozitivna korelacija med koncentracijo malondialdehida (MDA) in odstotkom nekrotične listne površine. Raziskava kaže, da je možen mehanizen preko katerega Si povečuje odpornost na zmrzovanje večja antioksidativna obramba in manjša peroksidacija lipidov, ki se odraža v večjem zadrževanju vode poleg delovanja Si kot čisto fizikalne prepreke.
Ključne besede
Celotno besedilo:
PDF (English)Literatura
Apel K., Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55: 373-399; DOI: 10.1146/annurev.arplant.55.031903.141701
Bharti A.K., Khurana, J.P. 1997. Mutant of Arabidopsis as tools to understand the regulation of phenylpropanoids pathway and UVB protection mechanism. Journal of Photochemistry and Photobiology, 65: 765-776; DOI: 10.1111/j.1751- 1097.1997.tb01923.x
Boominathan R., Doran P.M. 2002. Ni induced oxidative stress in roots of the Ni hyperaccumlator, Alyssum bertoloni. New phytologist, 156: 202-205; DOI: 10.1046/j.1469-8137.2002.00506.x
Bradford M.M. 1967. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254; DOI: 10.1016/0003-2697(76)90527-3
Broadley M., Brown P., Cakmak I., Ma J.F., Rengel Z., Zhao F.P. 2011. Beneficial elements. In: Marschner's Mineral Nutrition of Higher Plants. Marschner P. (eds.). Academic Press, UK, London: 249-269.
Cooke J., Leishman M.R. 2011. Is plant ecology more siliceous than we realise? Trends in Plant Science, 16: 61-68; DOI: 10.1016/j.tplants.2010.10.003
Dallagnol L.J., Rodrigues F.A., Tanaka F.A.O., Amorim L., Camargo L.E.A. 2012. Effect of potassium silicate on epidemic components of powdery mildew on melon. Plant Pathology, 61: 323-330; DOI: 10.1111/j.1365-3059.2011.02518.x
Ding M., Hou P., Shen X. 2010. Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and saltsensitive poplar species. Plant Molecular Biology, 73: 251-269; DOI: 10.1007/s11103-010-9612-9
Garbuzov M., Reidinger S., Hartley S.E. 2011. Interactive effects of plant-available soil silicon and herbivory on competition between two grass species. Annals of Botany, 108: 1355-1363; DOI: 10.1093/aob/mcr230
Guntzer F., Keller C., Meunier J.D. 2011. Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32: 201-213; DOI: 10.1007/s13593-011-0039-8 Habibi G., Hajiboland R. 2013. Alleviation of drought stress by silicon supplementation in pistachio (Pistacia vera L.) plants. Folia Horticulturae, 25: 21-29; DOI: 10.2478/fhort-2013-0003
Habibi G. 2014a. Role of trace elements in alleviating environmental stress. In: Emerging Technologies and Management of Crop Stress Tolerance Biological Techniques. Ahmad P., Rasool S. (eds.). Elsevier, USA: 313-331; DOI: 10.1016/B978-0-12- 800876-8.00014-X
Habibi G. 2014b. Silicon supplementation improves drought tolerance in canola plants. Russian Journal of Plant Physiology, 61, 6: 784-791; DOI: 10.1134/S1021443714060077
Hattori T., Inanaga S., Araki H., An P., Morita S., Luxova M., Lux A. 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123: 459-466; DOI: 10.1111/j.1399-3054.2005.00481.x
He Y., Xiao H., Wang H., Chen Y., Yu M. 2010. Effect of silicon on freezing-induced changes of solutes, antioxidants, and membrane stability in seashore paspalum turfgrass. Acta Physiologiae Plantarum, 32: 487-494; DOI: 10.1007/s11738-009-0425-x
Hossain M.T., Soga K., Wakabayashi K., Kamisaka S., Fujii S., Yamamoto R., Hoson T. 2007. Modification of chemical properties of cell walls by silicon and its role in regulation of the cell wall extensibility in oat leaves. Journal of Plant Physiology, 164, 4: 385-393; DOI: 10.1016/j.jplph.2006.02.003
Irigoyen J.J., Juan J.P.D., Diaz M.S. 1996. Drought enhances freezing tolerance in a freezing-sensitive maize (Zea mays). New Phytologist, 134: 53-59; DOI: 10.1111/j.1469-8137.1996.tb01145.x
Jaiswal P.C. 2004. Soil, Plant and Water Analysis, (eds.). New Delhi, Kalyani Publishers.
Kishimoto T., Sekozawa Y., Yamazaki H., Murakawa H., Kuchitsu K., Ishikawa M. 2014. Seasonal changes in ice nucleation activity in blue berry stems and effects of cold treatments in vitro. Environmental and Experimental Botany, 106: 13- 23; DOI: 10.1016/j.envexpbot.2014.02.010
Lara M.V., Disante K.B., Podesta F.E., Andreo C., Drincovich M.F. 2003. Induction of a crassulacean acid like metabolism in the C4 succulent plant, Portulaca oleracea L.: physiological and morphological changes are accompanied by specific modifications in phosphoenolpyruvate carboxylase. Photosynthesis Research, 77: 241-254; DOI: 10.1023/A:1025834120499
Levine A., Tenhaken R., Dixon R., Lamb C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583-593; DOI: 10.1016/0092-8674(94)90544-4
Liang Y., Zhuc J., Li Z., Chua G., Dingc Y., Zhangc J., Sun W. 2008. Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environmental and Experimental Botany, 64: 286-294; DOI: 10.1016/j.envexpbot.2008.06.005
Liu P., Yin L., Deng X., Wang S., Tanaka K., Zhang S. 2014. Aquaporin-mediated increase in root hydraulic conductance is involved in siliconinduced improved root water uptake under osmotic stress in Sorghum bicolor L. Journal of Experimental Botany, 65: 4747-4756; DOI: 10.1093/jxb/eru220
Liu J., Lin S., Xu P., Wang X., Bai J. 2009. Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves. Agricultural Sciences in China, 8, 9: 1075-1086; DOI: 10.1016/S1671- 2927(08)60315-6
Ma J.F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50: 11-18; DOI: 10.1080/00380768.2004.10408447
Marschner, H. 1995. Mineral nutrition of higher plants. Acedemic Press, London, UK.
Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R. 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell and Environment, 33: 453-467; DOI: 10.1111/j.1365- 3040.2009.02041.x
Rizwan M., Meunier J.D., Miche H., Keller C. 2012. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. Journal of Hazardous Materials, 209: 326-334; DOI: 10.1016/j.jhazmat.2012.01.033
Schützendübel A., Schwanz P., Teichmann T., Gross K., Langenfeld-Heyser R., Godbold D.L. 2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiationins cotspine roots. Plant Physiology, 127: 887-898; DOI: 10.1104/pp.010318
Sonobe K., Hattori T., An P., Tsuji W., Eneji A.E., Kobayashi S., Kawamura Y., Tanaka K., Inanaga S. 2011. Effect of silicon application on sorghum root responses to water stress. Journal of Plant Nutrition, 34: 71-82; DOI: 10.1080/01904167.2011.531360
Takahashi D., Li B., Nakayama T., Kawamura Y., Uemura M. 2013. Plant plasma membrane proteomics for improving cold tolerance. Frontiers in Plant Science, 17: 14-90.
Velikova V., Yordanov I., Edreva A. 2000. Oxidative stress and some antioxidant systems in acid raintreated bean plants-protective role of exogenous polyamines. Plant Science, 151: 59-66; DOI: 10.1016/S0168-9452(99)00197-1
Velioglu Y.S., Mazza G., Gao L., Oomah B.D. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46: 4113-4117; DOI: 10.1021/jf9801973
Waraich E.A., Amad R., Ashraf M.Y., Ahmad M. 2011. Improving agricultural water use efficiency by nutrient management. Acta agriculturae Scandinavica, 61: 291-304.
Waśkiewicz A., Beszterda M., Goliński P. 2014. Nonenzymatic antioxidants in plants. In: Oxidative damage to plants: Antioxidant networks and signaling. Ahmad P. (eds.). Elsevier, USA, 201- 234; DOI: 10.1016/B978-0-12-799963-0.00007-1
Zhang Q., Zhang J.Z., Chow W.S., Sun L.L., Chen J.W., Chen Y.J., Peng C.L. 2011. The influence of low temperature on photosynthesis and antioxidant enzymes in sensitive banana and tolerant plantain (Musa sp.) cultivars. Photosynthetica, 49: 201-208; DOI: 10.1007/s11099-011-0012-4
Zhu J., Dong C.H., Zhu J.K. 2007. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Current Opinion in Plant Biology, 10: 290-295; DOI: 10.1016/j.pbi.2007.04.010
Zucker M. 1965. Induction of phenylalanine deaminase by light, its relation to chlorogenic acid synthesis in potato tuber tissue. Physiologia Plantarum, 40: 779- 784; DOI: 10.1104/pp.40.5.779
DOI: http://dx.doi.org/10.14720/aas.2015.105.1.05
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2015 Acta agriculturae Slovenica
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941