Medsetev vzpodbuja fiziološko in morfološko prilagodljivost oljne ogrščice in ječmena v sušnem stresu

Noushin SADEGHZADEH, Roghieh HAJIBOLAND, Charlotte POSCHENRIEDER

Povzetek


Medsetev je način kmetovanja, ki izboljšuje pridelek poljščin zaradi zaradi boljše dostopnosti virov, vključno z vodo. Malo je raziskav, ki bi se ukvarjale s fiziološkimi mehanizmi tega fenomena. V tej raziskavi sta bila v rastni komori gojena oljna ogrščica (Brassica napus L.) in ječmen (Hordeum vulgare L.) kot monokultura (MC) ali kot mešan posevek (IC) v razmerah dobre preskrbe z vodo (WW) ali v razmerah sušnega stresa (DS). Po osmih tednih rasti v sušnem stresu je bila relativna vsebnost vode pri obeh vrstah večja pri medsetvi kot v monokulturi, pri oljni ogrščici je bilo odmiranje starih listov v razmerah sušnega stresa znatno kasnejše. Oljna ogrščica je imela v medsetvi v razmerah sušnega stresa večjo fotosintezo, večje kopičenje osmotikov, a večjo izgubo vode v primerjavi z gojenjem v monokulturi. Pri ječmenu je bila pri medsetvi v razmerah sušnega stresa manjša transpiracija, povečano razmerje korenina : poganjek, povečana akumulacija osmotikov v primerjavi z rastjo v monokulturi. Učinkovitost izrabe vode je bila pri ječmenu večja v medsetvi kot v monokulturi, v medsetvi je bil večji tudi pridelek oljne ogrščice. Ti podatki kažejo, da je medsetev primeren način gojenja obeh vrst v sušnih in polsušnih območjih v razmerah preskrbe z vodo z deževjem. 


Ključne besede


sušni stres; medsetev; osmotska prilagoditev; velikost fotosinteze; transpiracija; učinkovitost izrabe vode

Celotno besedilo:

PDF (English)

Literatura


Brooker, R. W., Bennett, A. E., Cong, W. F., Daniell, T. J., George, T. S., Hallett, P. D., Hawes, C., Iannetta, P. P., Jones, H. G., Karley, A. J., & Li, L. (2015). Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 206(1), 107‒117. https://doi.org/10.1111/nph.13132

Chastain, D.R., Snider, J.L., Choinski, J.S., Collins, G.D., Perry, C.D., Whitaker, J., Grey, T.L., Sorensen, R. B., van Iersel, M., Byrd, S.A., & Porter, W. (2016). Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum. Journal of Plant Physiology, 199, 18‒28. https://doi.org/10.1016/j.jplph.2016.05.003

Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560. https://doi.org/10.1093/aob/mcn125

Chen, B. J., Hajiboland, R., Bahrami-Rad, S., Moradtalab, N., & Anten, N. P. (2019). Presence of belowground neighbors activates defense pathways at the expense of growth in tobacco plants. Frontiers in Plant Science, 10, 751. https://doi.org/10.3389/fpls.2019.00751

Cruz de Carvalho, M.H. (2008). Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signaling & Behavior, 3, 156–165. https://doi.org/10.4161/psb.3.3.5536

Daneshnia, F., Amini, A., & Chaichi, M. R. 2015. Surfactant effect on forage yield and water use efficiency for berseem clover and basil in intercropping and limited irrigation treatments. Agricultural Water Management, 160, 57–63. https://doi.org/10.1016/j.agwat.2015.06.024

Gao, Y., Duan, A., Sun, J., Li, F., Liu, Z., Liu, H., & Liu, Z. (2009). Crop coefficient and water-use efficiency of winter wheat/spring maize strip intercropping. Field Crops Research, 111, 65–73. https://doi.org/10.1016/j.fcr.2008.10.007

Grema, A.K., & Hess, T.M. (1994). Water balance and water use of millet-cowpea intercrops in north east Nigeria. Agricultural Water Management, 26, 169–185. https://doi.org/10.1016/0378-3774(94)90056-6

Hajiboland, R., Norouzi, F., & Poschenrieder, C. (2014). Growth, physiological, biochemical and ionic responses of pistachio seedlings to mild and high salinity. Trees, 28, 1065–1078. https://doi.org/10.1007/s00468-014-1018-x

Jan, S., Abbas, N., Ashraf, M., & Ahmad, P. (2019). Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. Protoplasma, 256, 313–329. https://doi.org/10.1007/s00709-018-1310-5

Koch, G., Rolland, G., Dauzat, M., Bédiée, A., Baldazzi, V., Bertin, N., Guédon, Y., & Granier, C. (2019). Leaf production and expansion: a generalized response to drought stresses from cells to whole leaf biomass– a case study in the tomato compound leaf. Plants, 8, 409. https://doi.org/10.3390/plants8100409

Kong, C. H., Zhang, S. Z., Li, Y. H., Xia, Z. C., Yang, X. F., Meiners, S. J., & Wang, P. (2018). Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nature Communications, 9, 3867. https://doi.org/10.1038/s41467-018-06429-1

Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63, 1593–1608. https://doi.org/10.1093/jxb/err460

Kumar, S., Kaushal, N., Nayyar, H., & Gaur, P. (2012). Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. Acta Physiologiae Plantarum, 34, 1651–1658. https://doi.org/10.1007/s11738-012-0959-1

Lemoine, R., Camera, S. L., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N., Bonnemain, J. L., Laloi, M., Coutos-Thévenot, P., Maurousset, L., Faucher, M., Girousse, C., Lemonnier, P., Parrilla, J., & Durand, M. (2013). Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science, 4, 272. https://doi.org/10.3389/fpls.2013.00272

Lugojan, C., & Ciulca, S. (2011). Evaluation of relative water content in winter wheat. Journal of Horticultural Science and Biotechnology, 15, 173–177.

Martin-Guay, M. O., Paquette, A., Dupras, J., & Rivest, D. (2018). The new green revolution: sustainable intensification of agriculture by intercropping. Science of the Total Environment, 615, 767–772. https://doi.org/10.1016/j.scitotenv.2017.10.024

Mc Adam, S. A., Brodribb, T. J., & Ross, J. J. (2016). Shoot‐derived abscisic acid promotes root growth. Plant, Cell Environment, 39, 652–659. https://doi.org/10.1111/pce.12669

Mommer, L., Kirkegaard, J., & van Ruijven, J. (2016). Root–root interactions: towards a rhizosphere framework. Trends in Plant Science, 21, 209–217. https://doi.org/10.1016/j.tplants.2016.01.009

Noctor, G., Mhamdi, A., & Foyer, C. H. (2014). The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiology, 164, 1636–1648. https://doi.org/10.1104/pp.113.233478

Parida, A. K., Dagaonkar, V. S., Phalak, M.S., & Aurangabadkar, L. P. (2008). Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiologiae Plantarum, 5, 619–627. https://doi.org/10.1007/s11738-008-0157-3

Rees, D. J. (1986). The effects of population density and intercropping with cowpea on the water use and growth of sorghum in semi-arid conditions in Botswana. Agricultural and Forest Meteorology, 37, 293–308. https://doi.org/10.1016/0168-1923(86)90067-5

Sadeghzadeh, N., Hajiboland, R., Moradtalab, N., Poschenrieder, C. 2021. Growth enhancement of Brassica napus under both deficient and adequate iron supply by intercropping with Hordeum vulgare: a hydroponic study. Plant Biosystems, 155, 632–646. https://doi.org/10.1080/11263504.2020.1769215

Sánchez-Blanco, M. J., Alvarez, S., Ortuño, M. F., & Ruiz-Sánchez, M. C. (2014). Root system response to drought and salinity: root distribution and water transport. In: Morte, A. & Varma, A. (Eds.) Root Engineering (pp 325–352). Germany, Springer. https://doi.org/10.1007/978-3-642-54276-3_15

Semchenko, M., Saar, S., & Lepik, A. (2014). Plant root exudates mediate neighbour recognition and trigger complex behavioural changes. New Phytologist, 204, 631–637. https://doi.org/10.1111/nph.12930

Shackel, K. A., & Hall, A. E. (1984). Effect of intercropping on the water relations of sorghum and cowpea. Field Crops Research, 8, 381–387. https://doi.org/10.1016/0378-4290(84)90085-6

Singh, M., Kumar, J., Singh, S., Singh, V. P., & Prasad, S. M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Biotechnology, 14, 407–426. https://doi.org/10.1007/s11157-015-9372-8

Singh, S., Narwal, S. S., & Chander, J. (1988). Effect of irrigation and cropping systems on consumptive use, water use efficiency and moisture extraction patterns of summer fodders. International Journal of Tropical Agriculture, 6, 76–82.

Skirycz, A., & Inze, D. (2010). More from less: plant growth under limited water. Current Opinion in Biotechnology, 21, 197–203. https://doi.org/10.1016/j.copbio.2010.03.002

Szabados, L., & Savouré, A. (2009). Proline: a multifunctional amino acid. Trends in Plant Science, 15, 89–97. https://doi.org/10.1016/j.tplants.2009.11.009

Tambussi, E. A., Bort, J., & Araus, J. L. (2007). Water use efficiency in C3 cereals under Mediterranean conditions: a review of physiological aspects. Annals of Applied Biology, 150, 307–321. https://doi.org/10.1111/j.1744-7348.2007.00143.x

Tardieu, F., Simonneau, T., & Muller, B. (2018). The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. Annual Review of Plant Biology, 69, 733–759. https://doi.org/10.1146/annurev-arplant-042817-040218

Tardieu, F., Granier, C., & Muller, B. (2011). Water deficit and growth. Coordinating processes without an orchestrator? Current Opinion in Plant Biology, 14, 283–289. https://doi.org/10.1016/j.pbi.2011.02.002

Verbruggen, N., & Hermans, C., (2008). Proline accumulation in plants: a review. Amino Acids, 35, 753–759. https://doi.org/10.1007/s00726-008-0061-6

Xiong, H., Shen, H., Zhang, L., Zhang, Y., Guo, X., Wang, P., Duan, P., Ji, C., Zhong, L., Zhang, F., & Zuo, Y. (2013). Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping. Journal of Proteomics, 78, 447–460. https://doi.org/10.1016/j.jprot.2012.10.013

Zuo, Y. (2013). Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping. Journal of Proteomics, 78, 447–460. https://doi.org/10.1016/j.jprot.2012.10.013

Xue, Y., Xia, H., Christie, P., Zhang, Z., Li, L., & Tang, C. (2016). Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Annals of Botany, 117, 363–377. https://doi.org/10.1093/aob/mcv182

Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W. G., & Prentice, I. C. (2013). How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agricultural and Forest Meteorology, 182/183, 204–214. https://doi.org/10.1016/j.agrformet.2013.05.009

Zuo, Y., Li, X., Cao, Y., Zhang, F., & Christie, P. (2003). Iron nutrition of peanut enhanced by mixed cropping with maize: possible role of root morphology and rhizosphere microflora. Journal of Plant Nutrition, 26, 2093–2110. https://doi.org/10.1081/PLN-120024267

Zuo, Y., Liu, Y., Zhang, F., & Christie, P. (2004). A study on the improvement iron nutrition of peanut intercropping with maize on nitrogen fixation at early stages of growth of peanut on a calcareous soil. Soil Science & Plant Nutrition, 50, 1071–1078. https://doi.org/10.1080/00380768.2004.10408576

Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates extracts by anthrone. Biochemistry Journal, 57, 508–514. https://doi.org/10.1042/bj0570508

Fu, X., Wu, X., Zhou, X., Liu, S., Shen, Y., & Wu, F. (2015). Companion cropping with potato onion enhances the disease resistance of tomato against Verticillium dahliae. Frontiers in Plant Science, 6, 726. https://doi.org/10.3389/fpls.2015.00726




DOI: http://dx.doi.org/10.14720/aas.2022.118.3.2399

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2022 Noushin SADEGHZADEH, Roghieh HAJIBOLAND, Charlotte POSCHENRIEDER

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941