Antioksidacijski odziv vodenke (Impatiens walleriana L.) na sušo

Anamarija MATIJEVIĆ, Ajla ŠAKONJIĆ, Senad MURTIĆ

Povzetek


         Stres, ki ga povzroča suša sproži v rastlinah spremembe v morfologiji, biokemični zgradbi in fiziologiji, kar vodi k znatnemu zmanjšanju rasti in produktivnosti rastlin. Namen raziskave je bil ovrednotiti antioksidacijsko obrambo sejank vodenke (Impatiens walleriana L.) v sušnem stresu. Antioksidacijski odziv vodenke na sušo je bil ovrednoten z naslednjimi parametri: aktivnostjo katalaze, guajakol peroksidaze, pirogalol peroksidaze in askorbat peroksidaze, vsebnostjo celokupnih fenolov in flavonoidov in celokupne antioksidacijske kapacitete. Poskus je bil izveden v rastni sezoni 2020 v rastlinjaku v nadzorovanih razmerah. Polovica sejank vodenke (20 rastlin), je bila po aklimatizaciji razmeram rastlinjaka izpostavljena sušnemu stresu za pet dni, medtem ko je bila druga polovica (20 rastlin) redno zalivana. Rezultati raziskave so pokazali, da je izpostavitev sejank vodenke sušnemu stresu povečala aktivnosti analiziranih encimov, vsebnosti celokupnih fenolov in flavonoidov ter celokupno antioksidacijsko sposobnost listov. Večja izpostavitev vodenk suši je v opazovanem obdobju povzročila večji encimski in neencimski antioksidacijski obrambni odziv. Rezultati potrjujejo, da ima vodenka sposobnost razvoja encimskega in neencimskega antioksidacijskega obrambnega sistema in lahko preživi krajša obdobja izpostavitve suši.


Ključne besede


obrambni sistem; prosti radikali; listi; rast rastlin; stres

Celotno besedilo:

PDF (English)

Literatura


Abedi, T., & Pakniyat, H. (2010). Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics and Plant Breeding, 46, 27–34. https://doi.org/10.17221/67/2009-CJGPB

Aebi, M. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

Almeselmani, M., Deshmukh, P.S., Sairam, R.K., Kushwaha, S.R., Singh, T.P. (2006). Protective role of antioxidant enzymes under high temperature stress. Plant Science, 171(3), 382–388. https://doi.org/10.1016/j.plantsci.2006.04.009

Antonić, D., Milošević, S., Cingel, A., Lojić, M., Trifunović-Momčilov, M., Petrić, M., Subotić, A., Simonović, A. (2016). Effects of exogenous salicylic acid on Impatiens walleriana L. grown in vitro under polyethylene glycol-imposed drought. South African Journal of Botany, 105, 226–233. https://doi.org/10.1016/j.sajb.2016.04.002

Basu, S., Roychoudhury, A., Saha, P.P, Sengupta D.N. (2010). Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, 60(1), 51–59. https://doi.org/10.1007/s10725-009-9418-4

Benzie, I.F., & Strain, J.J. (1996). Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292

Berwal, M.K. & Ram, C. (2018). Superoxide Dismutase: A Stable Biochemical Marker for Abiotic Stress Tolerance in Higher Plants. In A. B. De Oliveira (Ed), Abiotic and Biotic Stress in Plants. London, UK: IntechOpen. https://doi.org/10.5772/intechopen.82079

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999

Chance, B., & Maehly A.C. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2, 764–775. https://doi.org/10.1016/S0076-6879(55)02300-8

Chugh, V, Kaur, N, Grewal, M.S., Gupta, A.K. (2013). Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage. Indian Journal of Biochemistry and Biophysics, 50(2), 150–158.

Cramer, G.R., Urano, K., Delrot, S., Pezzotti, M., Shinozaki, K. (2011). Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 11, 163. https://doi.org/10.1186/1471-2229-11-163

Dibacto, R.E.K., Tchuente,B.R.T., Nguedjo, M.W., Tientcheu, Y.M.T., Nyobe, E. C., Edoun, F.L.E., Kamini, M.F.G., Dibanda, R.F., Medoua, G.N. (2021): Total polyphenol and flavonoid content and antioxidant capacity of some varieties of Persea americana peels consumed in Cameroon. Scientific World Journal, 2021, e8882594. https://doi.org/10.1155/2021/8882594

Fahad, S., Bajwa. A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M.Z., Alharby, H., Wu, C., Wang, D., Huang, J. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, e1147. https://doi.org/10.3389/fpls.2017.01147

Gill, S.S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

Hasanuzzaman, M., Bhuyan, M., Anee, T.I., Parvin, K., Nahar, K., Mahmud, J.A., Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9), 384. https://doi.org/10.3390/antiox8090384

Kasote, D.M., Katyare, S.S., Hegde, M.V., Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8), 982–991. https://doi.org/10.7150/ijbs.12096

Kim, Y.H., Khan, A.L., Kim, D.H., Lee, S.Y., Kim, K.M., Waqas, M., Jung, H.Y., Shin, J.H., Kim, J.G., Lee, I.J. (2014). Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biology, 14, 13. https://doi.org/10.1186/1471-2229-14-13

Liang, T., Yue, W., Li, Q. (2010): Comparison of the phenolic content and antioxidant activities of Apocynum venetum L. (Luo-Bu-Ma) and two of its alternative species. International Journal of Molecular Sciences, 11(11):4452–4464. https://doi.org/10.3390/ijms11114452

Mehla, N., Sindhi, V., Josula, D., Bisht, P., Wani, S.H. (2017). An introduction to antioxidants and their roles in plant stress tolerance. In M. I. R. Khan & N. A. Khan (Eds.), Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress (pp. 1–23). Singapure, SG: Springer. https://doi.org/10.1007/978-981-10-5254-5_1

Nakano, Y., & Asada K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

Ough, C.S., & Amerine, M.A. (1988). Methods for Analysis of Musts and Wines (pp. 196–221). New York, NY: John Wiley & Sons.

Sabzmeydani, E., Sedaghathoor, S., Hashemabadi, D. (2021). Effect of salicylic acid and progesterone on physiological characteristics of Kentucky bluegrass under salinity stress. Revista de Ciencias Agrícolas, 38(1), 111–124. https://doi.org/10.22267/rcia.213801.151

Šamec, D., Karalija, E., Šola, I., Vujčić Bok, V., Salopek-Sondi, B. (2021). The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 10(1), 18. https://doi.org/10.3390/plants10010118

Schomburg, I, Jeske, L, Ulbrich, M, Placzek, S., Chang, A., Schomburg, D. (2017). The BRENDA enzyme information system–from a database to an expert system. Journal of Biotechnology 261, 194–206. https://doi.org/10.1016/j.jbiotec.2017.04.020

Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules (Basel, Switzerland), 24(13), 2452. https://doi.org/10.3390/molecules24132452

Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, e217037. https://doi.org/10.1155/2012/217037

Smejkal G.B., & Kakumanu S. (2019). Enzymes and their turnover numbers. Expert Review of Proteomics, 16(7), 543–544. https://doi.org/10.1080/14789450.2019.1630275

Smirnoff, N., & Arnaud, D. (2019). Hydrogen peroxide metabolism and functions in plants. New Phytologist, 221(3), 1197–1214. https://doi.org/10.1111/nph.15488

Tola, A.J., Jaballi, A., Missihoun, T.D. (2021). Protein carbonylation: Emerging roles in plant redox biology and future prospects. Plants, 10(7), e1451. https://doi.org/10.3390/plants10071451

Wang, X, Liu, H, Yu, F, Hu, B, Jia, Y, Sha, H, Zhao, H. (2019). Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Scientific Reports 9(1), 8543. https://doi.org/10.1038/s41598-019-44958-x

Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inzé, D., Van Camp, W. (1997). Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO journal, 16(16), 4806–4816. https://doi.org/10.1093/emboj/16.16.4806

Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2




DOI: http://dx.doi.org/10.14720/aas.2022.118.4.2438

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2022 Anamarija MATIJEVIĆ, Ajla ŠAKONJIĆ, Senad MURTIĆ

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941