Biološki in biokemični učinki lufenurona na hrošča Xanthogaleruca luteola (Muller, 1766) (Coleoptera: Chrysomelidae)

Bahareh MOHAMMADZADEH TAMAM, Mohammad GHADAMYARI, Elaheh SHAFIEI ALAVIJEH

Povzetek


Hrošč Xanthogaleruca luteola Mull je najpomembnejši defoliator brestov v urbanem okolju. V raziskavi so bili preučevani učinki lufenurona na nekatere biokemične in biološke lastnosti tega hrošča. LC30 in LC50 lufenurona sta bili določeni na drugem razvojnem štadiju ličink in sicer 20,22 in 36,65 mg l-1. Učinki LC30 in LC50 koncentracij lufenurona na nekatere biološke parametre so pokazali, da je lufenuron povzročil povečanje razvojnih obdobij ličinke, obdobja pred zabubljenjem in obdobja bube. Nobena od samic, ki so se izlegle iz obravnavanih ličink v celotnem življenskem obdobju ni odlegla jajčec. Koncentracija LC50 je zmanjšala vsebnost ogljikovih hidratov, maščob in beljakovin ter povečala vsebnost glikogena, ni pa bilo značilnih razlik v vsebnosti glikogena in beljakovin pri izpostavitvi. LC30 koncentraciji. Aktivnosti glutation-s-transferaze (GST) in esterase sta se pri izpostavitvi LC50 značilno povečali. Zaključujemo, da bi zaradi letalnih in subletalnih učinkov lufenurona na biokemične in biološke lastnosti tega hrošča to sredstvo lahko priporočili za uravnavanje škodljivcev in v programih integriranega uravnavanja škodljivcev.


Ključne besede


Xanthogaleruca luteola; lufenuron; razvojna obdobja; subletalni učinki; biokemični parametri

Celotno besedilo:

PDF (English)

Literatura


Ali, N. S., Ali, S. S., & Shakoori, A. R. (2011). Effects of sublethal doses of Talstar on biochemical components of malathion-resistant and-susceptible adults of Rhyzopertha dominica. Pakistan Journal of Zoology, 43(5).

Arruda, L. S., Rodrigues, A. R. S., Bermudez, N. C. B., Ribeiro, L. M. S., Neto, J. E. L., & Siqueira, H. A. A. (2020). Field resistance of Plutella xylostella (Lepidoptera: Plutellidae) to lufenuron: Inheritance and lack of cross-resistance to methoxyfenozide. Crop Protection, 136, 105237. https://doi.org/10.1016/j.cropro.2020.105237

Bashari, E., Ghadamyari, M., & Jalali Sendi, J. (2014). Toxicity, and biological and biochemical effects of hexaflumuron on the elm leaf beetle, Xanthogaleruca luteola (Col.: Chrysomelidae). Journal of Entomological Society of Iran, 34(3), 35–46.

Boivin, T., d’Hieres, C. C., Bouvier, J. C., Beslay, D., & Sauphanor, B. (2001). Pleiotropy of insecticide resistance in the codling moth, Cydia pomonella. Entomologia Experimentalis et Applicata, 99(3), 381–386. https://doi.org/10.1046/j.1570-7458.2001.00838.x

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Butter, N. S., Singh, G., & Dhawan, A. K. (2003). Laboratory evaluation of the insect growth regulator lufenuron against Helicoverpa armigera on cotton. Phytoparasitica, 31(2), 200–203. https://doi.org/10.1007/BF02980790

Correia, A. A., Wanderley–Teixeira, V., Teixeira, Á. A. C., Oliveira, J. V, Gonçalves, G. G. A., Cavalcanti, M. G. S., Brayner, F. A., & Alves, L. C. (2013). Microscopic analysis of Spodoptera frugiperda (Lepidoptera: Noctuidae) embryonic development before and after treatment with azadirachtin, lufenuron, and deltamethrin. Journal of Economic Entomology, 106(2), 747–755. https://doi.org/10.1603/EC12158

De Coen, W. M., & Janssen, C. R. (1997). The use of biomarkers in Daphnia magna toxicity testing. IV. Cellular energy allocation: a new methodology to assess the energy budget of toxicant-stressed Daphnia populations. Journal of Aquatic Ecosystem Stress and Recovery, 6(1), 43–55. https://doi.org/10.1023/A:1008228517955

De França, S. M., Breda, M. O., Barbosa, D. R. S., Araujo, A. M. N., & Guedes, C. A. (2017). The sublethal effects of insecticides in insects. Biological Control of Pest and Vector Insects, 23–39. https://doi.org/10.5772/66461

Defagó, M., Valladares, G., Banchio, E., Carpinella, C., & Palacios, S. (2006). Insecticide and antifeedant activity of different plant parts of Melia azedarach on Xanthogaleruca luteola. Fitoterapia, 77(7–8), 500–505. https://doi.org/10.1016/j.fitote.2006.05.027

Desneux, N., Decourtye, A., & Delpuech, J.-M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440

Dhadialla, T. S., Retnakaran, A., & Smagghe, G. (2009). Insect growth-and development-disrupting insecticides. In Insect development: morphogenesis, molting and metamorphosis (pp. 679–740). Academic Press.

Fahmy, N. M., & Dahi, H. F. (2009). Changes in detoxifying enzymes and carbohydrate metabolism associated with spinetoram in two field-collected strains of Spodoptera littoralis (Biosd.). Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest Control, 1(1), 17–26. https://doi.org/ 10.21608/eajbsf.2009.17549

FAO. (2008). Specifications and Evaluations for Agricultural Pesticides: Lufenuron. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/%0ASpecs/Lufenuron08.pdf. Accessed May,14/2020.

Fonseca, A. P. P., Marques, E. J., Torres, J. B., Silva, L. M., & Siqueira, H. Á. A. (2015). Lethal and sublethal effects of lufenuron on sugarcane borer Diatraea flavipennella and its parasitoid Cotesia flavipes. Ecotoxicology, 24(9), 1869–1879 https://doi.org/10.1007/s10646-015-1523-8

Genc, H., Phaon, C., & Phyciodes, P. (2002). Life cycle, nutrional ecology and reproduction. Ph. D. Disseretation.] University of Florida, Gainesville.

Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8

He, B., Ni, Y., Jin, Y., & Fu, Z. (2020). Pesticides-induced energy metabolic disorders. Science of The Total Environment, 729, 139033. https://doi.org/10.1016/j.scitotenv.2020.139033

Huang, Z., Wang, Y., & Zhang, Y. (2015). Lethal and sublethal effects of cantharidin on development and reproduction of Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology, 108(3), 1054–1064. https://doi.org/10.1093/jee/tov057

Huerta, A., Chiffelle, I., Puga, K., Azúa, F., & Araya, J. E. (2010). Toxicity and repellence of aqueous and ethanolic extracts from Schinus molle on elm leaf beetle Xanthogaleruca luteola. Crop Protection, 29(10), 1118–1123. https://doi.org/10.1016/j.cropro.2010.04.010

IRAC. (2020). Mode of Action Classification Scheme, Version 9.4. IRAC International MoA Working Group, Insecticide Resistance Action Committee.

Josan, A., & Singh, G. (2000). Sublethal effects of lufenuron on the diamondback moth, Plutella xylostella (Linnaeus). International Journal of Tropical Insect Science, 20(4), 303–308. https://doi.org/10.1017/S1742758400015666

Kandi, M. A., Ahmed, A. F., & Moustafa, H. Z. (2012). Toxicological and biochemical studies of lufenuron, chlorfluazuron and chromafenozide against Pectinophora gossypiella (Saunders). Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest Control, 4(1), 37–47. https://doi.org/ 10.21608/eajbsf.2012.17281

Klowden, M. J. (2013). Physiological systems in insects. Academic press. https://doi.org/10.1016/B978-0-12-415819-1.00001-5

Mahmoodvand, M., Mahmoudvand, M., Abbasipour, H., Garjan, A. S., & Bandani, A. R. (2012). Decrease in pupation and adult emergence of Plutella xylostella (L.) treated by hexaflumuron. Chilean Journal of Agricultural Research, 72(2). https://doi.org/10.4067/S0718-58392012000200007

Mansingh, A. (1972). Effects of farnesyl methyl ether on carbohydrate and lipid metabolism in the tent caterpillar, Malacosoma pluviale. Journal of Insect Physiology, 18(11), 2251–2263. https://doi.org/10.1016/0022-1910(72)90253-3

Memarizadeh, N., Ghadamyari, M., Sajedi, R. H., & Jalali Sendi, J. (2011). Characterization of esterases from abamectin-resistant and susceptible strains of Tetranychus urticae Koch (Acari: Tetranychidae). International Journal of Acarology, 37(4), 271–281. https://doi.org/10.1080/01647954.2010.517564

Nath, B. S. (2002). Shifts in glycogen metabolism in hemolymph and fat body of the silkworm, Bombyx mori (Lepidoptera: Bombycidae) in response to organophosphorus insecticides toxicity. Pesticide Biochemistry and Physiology, 74(2), 73–84. https://doi.org/10.1016/S0048-3575(02)00152-9

Nation, J. L. (2008). Insect physiology and biochemistry. CRC press. https://doi.org/10.1201/9781420061789

Nourbakhsh, S. (2019). List of important pests, diseases and weeds of major agricultural crops, pesticides and recommended methods for their control. Ministry of Jihad-e- Agriculture, Plant Protection Organization, Iran.

Oguri, E., & Steele, J. E. (2007). A comparative study of the metabolic effects of hypertrehalosemic hormone and 1, 2, 3, 4, 5, 6-hexachlorocyclohexane (γ-HCH) in the American cockroach, Periplaneta americana. Pesticide Biochemistry and Physiology, 87(3), 196–203. https://doi.org/10.1016/j.pestbp.2006.07.010

Pineda, S., Schneider, M.-I., Smagghe, G., Martínez, A.-M., Del Estal, P., Viñuela, E., Valle, J., & Budia, F. (2007). Lethal and sublethal effects of methoxyfenozide and spinosad on Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Economic Entomology, 100(3), 773–780. https://doi.org/10.1093/jee/100.3.773

Piri Aliabadi, F., Sahragard, A., & Ghadamyari, M. (2016). Lethal and sublethal effects of a chitin synthesis inhibitor, lufenuron, against Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). Journal of Crop Protection, 5(2), 203–214. https://doi.org/10.18869/modares.jcp.5.2.203

Rahman, K. M. A. (2017). Embryonic development disrupted in the desert locust Schistocerca gregaria Forskål (Orthoptera: Acrididae) due to lufenuron application. Efflatounia, 17, 1–8.

Reda, F. A., El-barky, N. M., Abd Elaziz, M. F., Awad, M. H., El-Halim, A., & Hisham, M. E. (2010). Effect of Chitin synthesis inhibitors (flufenoxuron) on some biological and biochemical aspects of the cotton leaf worm Spodoptera littoralis Bosid (Lepidoptera: Noctuidae). Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest Control, 2(2), 43–56. http://doi.org/ 10.21608/eajbsf.2010.17452

Rehan, A., & Freed, S. (2015). Fitness cost of methoxyfenozide and the effects of its sublethal doses on development, reproduction, and survival of Spodoptera litura (Fabricius)(Lepidoptera: Noctuidae). Neotropical Entomology, 44(5), 513–520. https://doi.org/10.1007/s13744-015-0306-5

Rodenhouse, N. L., Best, L. B., O’Connor, R. J., Bollinger, E. K., O’Connor, R. J., Bollinger, E. K., O’Connor, R. J., & Bollinger, E. K. (2004). SAS Institute Inc. SAS, 9(1), 3.

Saber, M., Parsaeyan, E., Vojoudi, S., Bagheri, M., Mehrvar, A., & Kamita, S. G. (2013). Acute toxicity and sublethal effects of methoxyfenozide and thiodicarb on survival, development and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae). Crop Protection, 43, 14–17. https://doi.org/10.1016/j.cropro.2012.09.011

Sáenz-de-Cabezón, F. J., Pérez-Moreno, I., Zalom, F. G., & Marco, V. (2006). Effects of lufenuron on Lobesia botrana (Lepidoptera: Tortricidae) egg, larval, and adult stages. Journal of Economic Entomology, 99(2), 427–431. https://doi.org/10.1093/jee/99.2.427

Schoonhoven, L. M. (1982). Biological aspects of antifeedants. Entomologia Experimentalis et Applicata, 31(1), 57–69. https://doi.org/10.1111/j.1570-7458.1982.tb03119.x

Singh, N. B., & Sinha, R. N. (1977). Carbohydrate, lipid and protein in the developmental stages of Sitophilus oryzae and S. granarius (Coleoptera: Curculionidae). Annals of the Entomological Society of America, 70(1), 107–111. https://doi.org/10.1093/aesa/70.1.107

Software, L. (1987). POLO-PC: a user’s guide to probit or logit analysis. LeOra software Berkeley, CA.

Stark, J. D., & Banks, J. E. (2003). Population-level effects of pesticides and other toxicants on arthropods. Annual Review of Entomology, 48(1), 505–519. https://doi.org/10.1146/annurev.ento.48.091801.112621

Storch, G., Loeck, A. E., Borba, R. S., Magano, D. A., Moraes, C. L., & Grutzmacher, C. L. (2007). The effect of sub-lethal do. ses of insecticides on artificial diet and caterpillars of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Revista Brasileira de Agrociência, 13(2), 175–179.

Su, Y., Ren, X., Ma, X., Wang, D., Hu, H., Song, X., Cui, J., Ma, Y. & Yao, Y. (2022). Evaluation of the toxicity and sublethal effects of acetamiprid and dinotefuran on the predator Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae). Toxics, 10, 309. https://doi.org/10.3390/toxics10060309

Tunaz, H., & Uygun, N. (2004). Insect growth regulators for insect pest control. Turkish Journal of Agriculture and Forestry, 28(6), 377–387.

Van Asperen, K. (1962). A study of housefly esterases by means of a sensitive colorimetric method. Journal of Insect Physiology, 8(4), 401–416. https://doi.org/10.1016/0022-1910(62)90074-4

Verslycke, T., Vercauteren, J., Devos, C., Moens, L., Sandra, P., & Janssen, C. R. (2003). Cellular energy allocation in the estuarine mysid shrimp Neomysis integer (Crustacea: Mysidacea) following tributyltin exposure. Journal of Experimental Marine Biology and Ecology, 288(2), 167–179. https://doi.org/10.1016/S0022-0981(03)00006-6

Wigglesworth, V. B. (2012). The principles of insect physiology. Springer Science & Business Media.

Wilce, M. C. J., & Parker, M. W. (1994). Structure and function of glutathione S-transferases. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1205(1), 1–18. https://doi.org/10.1016/0167-4838(94)90086-8

Yin, X. H., Wu, Q. J., Li, X. F., Zhang, Y. J., & Xu, B. Y. (2008). Effect of sublethal concentrations of spinosad on the activities of detoxifying enzymes in the larvae of diamondback moth Plutella xylostella. Chinese Jjournal of Pesticides Science, 10, 28–34. https://doi.org/10.1016/j.cropro.2008.05.008

Yu, S. J. (2014). The toxicology and biochemistry of insecticides. CRC press. https://doi.org/10.1201/b18164

Yuval, B., Kaspi, R. O. Y., Shloush, S., & Warburg, M. S. (1998). Nutritional reserves regulate male participation in Mediterranean fruit fly leks. Ecological Entomology, 23(2), 211–215. https://doi.org/10.1046/j.1365-2311.1998.00118.x

Zhang, S., Qin, C., & Safe, S. H. (2003). Flavonoids as aryl hydrocarbon receptor agonists/antagonists: effects of structure and cell context. Environmental Health Perspectives, 111(16), 1877–1882. https://doi.org/10.1289/ehp.6322




DOI: http://dx.doi.org/10.14720/aas.2022.118.4.2519

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2022 Bahareh MOHAMMADZADEH TAMAM, Mohammad GHADAMYARI, Elaheh SHAFIEI ALAVIJEH

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941