Izolacija na sol tolerantnih sevov bakterij iz rodu Pseudomonas s potencialom zmanševanja solnega stresa pri arašidu (Arachis hypogaea L.)

Quang Trung DO, The Anh LUU, Minh Truong DAO, Quoc Nam HOANG, Trong Tri NGUYEN

Povzetek


Uporaba rast vzpodbujajočih rizobakterij (PGPR) je obetajoča rešitev za izboljšanje rasti rastlin v razmerah solnega stresa. Med PGPR imajo bakterije iz rodu Pseudomonas mehanizme, ki vzpodbujajo rast rastlin in povečujejo njihovo odpornost v razmerah biotičnega in abiotičnega stresa. Namen raziskave je bil izolirati bakterije iz rodu Pseudomonas iz rizosfere rastlin nabranih v zasoljenih tleh na območju Nam Dinh in preučiti njihove fukcije pri vzpodbujanju rasti sejank arašidov, rastočih v slanih tleh. Izoliranih je bilo devet vrst bakterij iz rodu Pseudomonas, vendar je bilo samo sedem od teh potrjenih s specifičnimi primerji za rod Pseudomonas. Dva od teh sedmih izolatov, ND06 in ND09, sta bila izbrana na osnovi njunih lastnosti vzpodbujanja rasti rastlin s tvorbo indol-3-ocetne kisline (IAA), raztaplanja fosfatov in fiksacije dušika. Dodatno sta oba seva vsebovala gen za kodiranje 1-aminociklopropan-1-karboksilaze (ACC), deaminaze, ki ima pomembnmo vlogo pri podpori rastlinam za prenašanje različnih stresnih razmer. Še posebej je sev ND09 izboljšal rastne parametre sejank arašidov v normalnih razmerah in ob solnem stresu. Med tem je sev ND06 izboljšal rast rastlin samo v razmerah solnega stresa, ne pa v normalnih razmerah. Razultati nakazujejo, da bi v prihodnosti sev ND09 lahko uporabili kot biotični aganes pri okolju prijaznem kmetovanju.

Ključne besede


arašid; PGPR; Pseudomonas; odpornost na solni stres

Celotno besedilo:

PDF (English)

Literatura


Bui, T.V. (2016). Plant physiology. Ho Chi Minh National University Publishing House, p. 198. (in Vietnamese)

Botelho, G.R., Mendonça-hagler, L.C. (2006). Fluorescent Pseudomonas associated with the rhizosphere of crops- An overview. Brazilian Journal of Microbiology, 37, 401-416. https://doi.org/10.1590/S1517-83822006000400001

Kang, S.M., Joo, G.J., Hamayun, M., Na, C.I., Shin, D.H., Kim, Y.K., Hong, J.K., Lee, I.J. (2009). Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnology Letters, 31(2), 277-281. https://doi.org/10.1007/s10529-008-9867-2

Cai, D., Xu, Y., Zhao, F., Zhang, Y., Duan, H., Guo, X. (2021). Improved salt tolerance of Chenopodium quinoa Willd. contributed by Pseudomonas sp. strain M30-35. Peer Journal, 9, e10702. https://doi.org/10.7717/peerj.10702

Chu, T.N., Tran, B.T.H., Bui, V.L., Hoang, M. (2019). Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC Research Notes, 12(1), 1-7. https://doi.org/10.1186/s13104-019-4046-1

Costa-Gutierrez, S.B., Raimondo, E.E., Lami, M.J., Vincent, P.A., Espinosa-Urgel, M., de Cristóbal, R.E. (2020a). Inoculation of Pseudomonas mutant strains can improve growth of soybean and corn plants in soils under salt stress. Rhizosphere, 16, 100255. https://doi.org/10.1016/j.rhisph.2020.100255

Costa-Gutierrez, S.B., Lami, M.J., Caram-Di Santo, M.C., Zenoff, A.M., Vincent, P.A., Molina-Henares, M.A., Espinosa-Urgel, M., de Cristóbal, R.E. (2020b). Plant growth promotion by Pseudomonas putida KT2440 under saline stress: Role of eptA. Applied Microbiology and Biotechnology, 104, 4577-4592. https://doi.org/10.1007/s00253-020-10516-z

Costa-Gutierrez, S.B., Caram-Di Santo, M.C.d.V., Zenoff, A.M., Espinosa-Urgel, M., de Cristóbal, R.E., Vincent, P.A. (2021). Isolation of Pseudomonas strains with potential for protection of soybean plants against saline stress. Agronomy, 11, 2236. https://doi.org/10.3390/agronomy11112236

Damodaran, T., Sah, V., Rai, R.B., Sharma, D.K., Mishra, V.K., Jha, S.K., Kannan, R. (2013). Isolation of salt tolerant endophytic and rhizospheric bacteria by natural selection and screening for promising plant growth-promoting rhizobacteria (PGPR) and growth vigour in tomato under sodic environment. African Journal of Microbiology Research, 7(44), 5082-5089.

Egamberdieva, D. (2009). Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiologiae Plantarum, 31(4), 861-864. doi: 10.1007/s11738-009-0297-0. https://doi.org/10.1007/s11738-009-0297-0

Egamberdieva, D. (2011). Survival of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant, Soil and Environment, 57(3), 122–127. https://doi.org/10.17221/316/2010-PSE

Egamberdieva, D. (2015). The role of phytohormone producing bacteria in alleviating salt stress in crop plants. In: Biotechnological techniques of stress tolerance in plants (Editors: M. Miransari), Stadium Press LLC, USA, p. 20–39.

El-Nahrawy, S., Yassin, M. (2020). Response of different cultivars of wheat plants (Triticum aestivum L.) to inoculation by Azotobacter sp. under salinity stress conditions. Journal of Advances in Microbiology, 20, 59-79. https://doi.org/10.9734/jamb/2020/v20i130209

Fatima, T., Arora, N.K. (2021). Pseudomonas entomophila PE3 and its exopolysaccharides as biostimulants for enhancing growth, yield and tolerance responses of sunflower under saline conditions. Microbiological Research, 244, 126671. https://doi.org/10.1016/j.micres.2020.126671

Fernández, M., Porcel, M., de la Torre, J., Molina-Henares, M.A., Daddaoua, A., Llamas, M.A., Roca, A., Carriel, V., Garzón, I., Ramos, J.L., Alaminos, M., Duque, E. (2015). Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains. Frontiers in Microbiology, 6, 871. https://doi.org/10.3389/fmicb.2015.00871

Goswami, D., Dhandhukia, P., Patel, P., Thakker, J.N. (2014). Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiological Research, 169(1), 66-75. https://doi.org/10.1016/j.micres.2013.07.004

Glickmann, E., Dessaux, Y. (1995). A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61(2), 793-796. https://doi.org/10.1128/aem.61.2.793-796.1995

Kim, J., Mele, P., Crowley, D. (2013). Application of PCR primer sets for detection of Pseudomonas sp. functional genes in the plant rhizosphere. Journal of Agricultural Chemistry and Environment, 2(1), 8-15. https://doi.org/10.4236/jacen.2013.21002

Malik, D.K., Sindhu, S.S. (2011). Production of indole acetic acid by Pseudomonas sp.: Effect of co-inoculation with Mesorhizobium sp. on nodulation and plant growth of chickpea (Cicer arietinum). Physiology and Molecular Biology of Plants, 17(1), 25-32. https://doi.org/10.1007/s12298-010-0041-7

O’Toole, G.A., Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Molecular Microbiology, 28, 449-61. https://doi.org/10.1046/j.1365-2958.1998.00797.x.

Pikovskaya, R.I. (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya, 17, 362–370.

Sharma, S., Kulkarni, J., Jha, B. (2016). Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Frontiers in Microbiology, 7, 1600. https://doi.org/10.3389/fmicb.2016.01600

Singh, R.P., Jha, P., Jha, P.N. (2015). The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. Journal of Plant Physiology, 184, 57-67. https://doi.org/10.1016/j.jplph.2015.07.002

Shafi, J., Tian, H., Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment, 31, 446–459. https://doi.org/10.1080/13102818.2017.1286950

Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., Gobi, T.A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus, 2(1), 1-14. https://doi.org/10.1186/2193-1801-2-587

Saravanakumar, D., Samiyappan, R. (2007). ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. Journal of Applied Microbiology, 102(5), 1283-1292. https://doi.org/10.1111/j.1365-2672.2006.03179.x

Sheehy, R.E., Honma, M., Yamada, M., Sasaki, T., Martineau, B., Hiatt, W. (1991). Isolation, sequence, and expression in Escherichia Coli of the Pseudomonas sp. strain ACP gene encoding 1-aminocyclopropane-1-carboxylate deaminase. Journal of Bacteriology, 173(17), 5260-5265. https://doi.org/10.1128/jb.173.17.5260-5265.1991

Upadhyay, S.K., Singh, D.P. (2015). Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology, 17(1), 288-293. https://doi.org/10.1111/plb.12173

Widmer, F., Seidler, R.J., Gillevet, P.M., Watrud, L.S., Giovanni, G.D. (1998). A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples. Applied and Environmental Microbiology, 64(7), 2545-2553. https://doi.org/10.1128/AEM.64.7.2545-2553.1998

Wright, S.F., Weaver, R.W. (1981). Enumeration and identification of nitrogen-fixing bacteria from forage grass roots. Applied and Environmental Microbiology, 42(1), 97-101. https://doi.org/10.1128/aem.42.1.97-101.1981

Yadav, S., Yadav, S., Kaushik, R., Saxena, A.K., Arora, D.K. (2014). Genetic and functional diversity of fluorescent Pseudomonas from rhizospheric soils of wheat crop. Journal of Basic Microbiology, 54(5), 425-437. https://doi.org/10.1002/jobm.201200384

Zörb, C., Schmitt, S., Neeb, A., Karl, S., Linder, M., Schubert, S. (2004). The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Science, 167(1), 91-100. https://doi.org/10.1016/j.plantsci.2004.03.004

Zörb, C., Geilfus, C.M., Dietz, K.J. (2019). Salinity and crop yield. Plant Biology, 21, 31-38. https://doi.org/10.1111/plb.12884




DOI: http://dx.doi.org/10.14720/aas.2022.118.3.2626

Povratne povezave



Avtorske pravice (c) 2022 Quang Trung DO, The Anh LUU, Minh Truong DAO, Quoc Nam HOANG, Trong Tri NGUYEN

##submission.license.cc.by4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941