Učinki obravnavanja semen pred setvijo in dodajanje elementov v sledeh na uspevanje pšenice

Mohsen JANMOHAMMADI, Maryam MOHAMADZADEH-ALGHOO, Naser SABAGHNIA, Viorel ION, Shahbaz NAEEM

Povzetek


Raziskava je bila izvedena za ovrednotenje učinkov predtretiranja semen in foliarnega nanosa mikroelementov na uspevanje krušne pšenice v polsušnih območjih severozahodnega Irana. Predsetvena obravnavanja semena so bila: S1- brez obravnavanj (intaktna semena), S2 - predtretiranja z vodo (hydro-priming), S3 - bio-priming (semena inokulirana z mešanico bakterij, ki promovirajo rast rastlin - Azotobacter chroococcum + Azospirillum lipoferum), S4 - semena predtretirana z mikrohranili in kasnejšim foliarnim dodajanjem mikrohranil, kontrola (0): pršenje listov z distilirano vodo, Fe: foliarno pršenje z železom, Zn: foliarno pršenje s cinkom. Vsa predtretiranja so značilno povečala višino rastlin, število stranskih pogankov, širino krošnje (nadzemnega dela rastlin), celokupne biomase, maso klasov, število semen na klas in pridelek semena v primerjavi z intaktnimi semeni. Primerjava učinkov predtretiranja semen in obravnavanj z gnojili je pokazala, da so bili učinki predtretiranj semen na povečanje rasti in pridelka bolj očitni kot učinki gnojenja. Največje povečanje pridelka semen in njegovih komponent je bilo zabeleženo pri rastlinah, ki so zrasle iz semen predtretiranih z mešanico bakterij in esencielnih hranil v sledeh. Primerjava obravnavanj z gnojili je pokazala, da je bilo povečanje rastnih parametrov značilno boljše pri uporabi Zn. Iz te raziskave bi lahko zaključili, da bi bila kombinacija obravnavanja semen s predsetvenim tretiranjem z vodo, namakanjem semen v raztopini mikrohranil in inokulacijo z mikrobi koristna za povečanje pridelave pšenice in trajnosti pridelave pri manjših kmetih v polsušnih območjih.


Ključne besede


bio-priming (predtretiranje z mikrobi); vodno predtretiranje; predtretiranje s hranili; pridelek semena

Celotno besedilo:

PDF (English)

Literatura


Anwar, A., Xianchang, Y. U., & Yansu, L. I. (2020). Seed priming as a promising technique to improve growth, chlorophyll, photosynthesis and nutrient contents in cucumber seedlings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 116-127. https://doi.org/10.15835/nbha48111806

Ashraf, M., & Foolad, M.R. (2005) Pre-sowing seed treatment—a shotgun approach to improve germination growth and crop yield under saline and non-saline conditions. Advanced Agronomy, 88, 223-271. https://doi.org/10.1016/S0065-2113(05)88006-X

Burnett, A. C. (2019). Source-sink relationships. In: eLS. John Wiley & Sons, Ltd: Chichester.

https://doi.org/10.1002/9780470015902.a0001304.pub2

Camara, B. S., Camara, F., Berthe, A., & Oswald, A. (2013). Microdosing of fertilizer – a technology for farmers’ needs and resources. International Journal of AgriScience, 3, 387–399.

Damalas, C. A., Koutroubas, S. D., & Fotiadis, S. (2019). Hydro-priming effects on seed germination and field performance of faba bean in spring sowing. Agriculture, 9(9), 201. https://doi.org/10.3390/agriculture9090201

Devika, O.S., Singh, S., Sarkar, D., Barnwal, P., Suman, J., & Rakshit, A. (2021). Seed priming: a potential supplement in integrated resource management under fragile intensive ecosystems. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.654001

Everitt, B.S., & Dunn, G. (1992). Applied multivariate data analysis. New York: Oxford University Press.

Feng, G., Luo, H., Zhang, Y., Gou, L., Yao, Y., Lin, Y., & Zhang, W. (2016). Relationship between plant canopy characteristics and photosynthetic productivity in diverse cultivars of cotton (Gossypium hirsutum L.). The Crop Journal, 4(6), 499-508. https://doi.org/10.1016/j.cj.2016.05.012

Harris, D., Joshi, A., Khan, P.A., Gothkar, P., & Sodhi, P.S. (1999). On-farm seed priming in semi-arid agriculture: Development and evaluation in maize, rice and chickpea in India using participatory methods. Experimental Agriculture, 35, 15–29. https://doi.org/10.1017/S0014479799001027

Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition—current knowledge and future

directions. Frontiers in Plant Science. 8, 1617. https://doi.org/10.3389/fpls.2017.01617

Jain, A., Singh, S., Sarma, B.K., & Singh, H.B. (2012). Microbial consortium–mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. Journal of Applied Microbiology. 112 (3), 537–550. https://doi.org/10.1111/j.1365-2672.2011.05220.x

Kaur, S., Kaur, R., & Chauhan, B. S. (2018). Understanding crop-weed-fertilizer-water interactions and their implications for weed management in agricultural systems. Crop Protection, 103, 65-72. https://doi.org/10.1016/j.cropro.2017.09.011

Lal, R. (2013). Climate change and soil quality in the WANA region. In Climate Change and Food Security in West Asia and North Africa (pp. 55-74). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6751-5_3

Ling, Q., Huang, W., & Jarvis, P. (2011). Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynthesis Research, 107(2), 209-214. https://doi.org/10.1007/s11120-010-9606-0

Mengual, C., Schoebitz, M., Azcon, R., & Roldan, A. (2014). Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions. Journal of Environmental Management, 134, 1–7. https://doi.org/10.1016/j.jenvman.2014.01.008

Mirshekari, B., Hokmalipour, S., Sharifi, R.S., Farahvash, F., & Ebadi-Khazine-Gadim, A. (2012). Effect of seed biopriming with plant growth promoting rhizobacteria (PGPR) on yield and dry matter accumulation of spring barley (Hordeum vulgare L.) at various levels of nitrogen and phosphorus fertilizers. Journal of Food, Agriculture and Environment, 10(3/4), 314–320.

Paparella, S., Araújo, S.S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: State of the art and new perspectives. Plant Cell Reports, 34, 1281–1293. https://doi.org/10.1007/s00299-015-1784-y

Ryan, J. (2011). Rainfed farming systems in the West Asia–North Africa (WANA) Region. In Rainfed Farming Systems (pp. 365-393). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9132-2_15

Roslan, M.A.M., Zulkifli, N.N., Sobri, Z.M., Zuan, A.T.K., Cheak, S.C., & Abdul Rahman, N. A. (2020). Seed biopriming with P-and K-solubilizing Enterobacter hormaechei sp. improves the early vegetative growth and the P and K uptake of okra (Abelmoschus esculentus) seedling. PloS ONE, 15(7), e0232860. https://doi.org/10.1371/journal.pone.0232860

Samad, A., Khan, M. J., Shah, Z., & Tariq Jan, M. (2014). Determination of optimal duration and concentration of zinc and phosphorus for priming wheat seed. Sarhad Journal of Agriculture, 30(1), 27-34.

Sarkar, D., Rakshit, A. (2020). Safeguarding the fragile rice–wheat ecosystem of the IndoGangetic Plains through bio-priming and bioaugmentation interventions. FEMS Microbiology Ecology, 96(12), fiaa221. https://doi.org/10.1093/femsec/fiaa221

Sarkar, D., Singh, S., Parihar, M., Rakshit, A. (2021). Seed bio-priming with microbial inoculants: A tailored approach towards improved crop performance, nutritional security, and agricultural sustainability for smallholder farmers. Current Research in Environmental Sustainability, 3, 100093. https://doi.org/10.1016/j.crsust.2021.100093

Sime, G., & Aune, J. B. (2020). On‐farm seed priming and fertilizer micro‐dosing: Agronomic and economic responses of maize in semi‐arid Ethiopia. Food and Energy Security, 9(1), e190. https://doi.org/10.1002/fes3.190

Singh, P., Singh, J., Ray, S., Rajput, R.S., Vaishnav, A., Singh, R.K., & Singh, H.B. (2020). Seed biopriming with antagonistic microbes and ascorbic acid induce resistance in tomato against Fusarium wilt. Microbiological Research, 237, 126482. https://doi.org/10.1016/j.micres.2020.126482

Singhal, R. K., Pandey, S., & Bose, B. (2021). Seed priming with Mg (NO3)2 and ZnSO4 salts triggers physio-biochemical and antioxidant defense to induce water stress adaptation in wheat (Triticum aestivum L.). Plant Stress, 2, 100037. https://doi.org/10.1016/j.stress.2021.100037

Tuiwong, P., Lordkaew, S., Veeradittakit, J., Jamjod, S., & Prom-u-thai, C. (2022). Seed priming and foliar application with nitrogen and zinc improve seedling growth, yield, and zinc accumulation in rice. Agriculture, 12(2), 144. https://doi.org/10.3390/agriculture12020144

Wajid, M., Khan, M. A., Shirazi, M. U., Summiya, F., & Saba, M. (2018). Seed priming induced high temperature tolerance in wheat by regulating germination metabolism and physio-biochemical properties. International Journal of Agriculture and Biology, 20(9), 2140-2148. Doi: 10.17957/IJAB/15.0747

Wang, L., Xia, H., Li, X., Qiao, Y., Xue, Y., Jiang, X., Yan, W., Liu, Y., Xue, Y. and Kong, L., (2021). Source–sink manipulation affects accumulation of zinc and other nutrient elements in wheat grains. Plants, 10(5), 1032. https://doi.org/10.3390/plants10051032

Zhuang, L., Ge, Y., Wang, J., Yu, J., Yang, Z., & Huang, B. (2019). Gibberellic acid inhibition of tillering in tall fescue involving crosstalks with cytokinins and transcriptional regulation of genes controlling axillary bud outgrowth. Plant Science, 287, 110168. https://doi.org/10.1016/j.plantsci.2019.110168




DOI: http://dx.doi.org/10.14720/aas.2023.119.1.2671

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2023 Mohsen JANMOHAMMADI, Maryam MOHAMADZADEH-ALGHOO, Naser SABAGHNIA, Viorel ION, Shahbaz NAEEM

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941