Vloga transpozonskih elementov v evoluciji in prilagoditvah kmetijskih rastlin
Povzetek
Transpozonski elementi (TE) so odseki DNK, ki predvsem pri rastlinah predstavljajo največji delež genoma. Prav zaradi njihove številčnosti in sposobnosti prehajanja znotraj genoma, lahko ključno vplivajo na fenotipske spremembe in evolucijo rastlinskih vrst, predvsem pa tudi omogočajo prilagoditev rastlin na stresne dejavnike. Preko genetskih in epigenetskih mehanizmov delovanja spreminjajo zgradbo genov, vplivajo na njihovo izražanje in ustvarjajo nova regulatorna omrežja. Delež genoma, ki ga predstavljajo in vpliv, ki ga imajo na le-tega, se med posameznimi vrstami močno razlikuje, bili pa so odkriti v vseh do sedaj raziskanih rastlinskih genomih. S svojim delovanjem med drugim pogosto povzročijo škodljive mutacije, zato je njihovo izražanje s strani gostitelja navadno dobro nadzorovano. Poznavanje mehanizmov delovanja transpozonskih elementov in njihovo nadaljnje raziskovanje bodo še v večji meri omogočali njihovo uporabo, na primer za namen izboljšanja agronomsko pomembnih lastnosti poljščin, za odpornost na bolezni in škodljivce in za zatiranje invazivnih vrs.
Ključne besede
Celotno besedilo:
PDFLiteratura
Butelli E., Licciardello C., Zhang Y., Liu J., Mackay S., Bailey P., Reforgiato-Recupero G., et al. (2012). Retrotransposons control fruit-specific, cold-dependent accumulation od anthocyanins in blood orange. The Plant Cell, 24, 1242-1255. Doi: 10.1105/tpc.111.095232
Bui Q. T., Grandbastien M.-A. (2012). LTR retrotransposons as controlling elements of genome response to stress? In M.-A. Grandbastien, J. M. Casacuberta (Eds.), Plant transposable elements, Topics in current genetics. (pp. 273-296). Berlin, Heidelberg: Springer. Doi: 10.1007/978-3-642-31842-9_14
Capy P., Gasperi G., Biémont C., Bazin C. (2000). Stress and transposable elements: co-evolution or useful parasites? Heredity, 85, 101-106. Doi: 10.1046/j.1365-2540.2000.00751.x
Casacuberta E., González J. (2013). The impact of transposable elements in environmental adaptation. Molecular Ecology, 22, 1503-1517. Doi: 10.1111/mec.12170
Comfort N. C. (1999). »The real point is control«: the reception of Barbara McClintock's controlling elements. Journal of the History of Biology, 32, 133-162. Doi: 10.1023/A:1004468625863
Contreras B., Vives C., Castells R., Casacuberta J. M. (2015). The impact of transposable elements in the evolution of plant genomes: From selfish elements to keyplayers. In P. Pontarotti (Ed.), Evolutionary biology: Biodiversification from genotype to phenotype. (pp. 93-105). Switzerland, Springer. Doi: 10.1007/978-3-319-19932-0_6
Grandbastien M.-A. (2015). LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochimica et Biophysica Acta, 1849, 403-416. Doi: 10.1016/j.bbagrm.2014.07.017
Kejnovsky E., Hawkins J. S., Feschotte C. (2012). Plant transposable elements: biology and evolution. Plant Genome Diversity, 1, 17-34. Doi: 10.1007/978-3-7091-1130-7_2
Kidwell M. G., Lisch D. R. (2001). Perspective: Transposable elements, parasitic DNA, and genome evolution. Internationa Journal of Organic Evolution, 55, 1-24. Doi: 10.1111/j.0014-3820.2001.tb01268.x
Levin H., Moran J. (2011). Dynamic interactions between transposable elements and their hosts. Nature Reviews, 12, 615-627. Doi: 10.1038/nrg3030
Lisch D. (2013). How important are transposons for plant evolution? Nature Reviews, 14, 49-61. Doi: 10.1038/nrg3374
Mao H., Wang H., Liu S., Li Z., Yang X., Yan J., Li J., et al. (2015). A transposable element in a NAC gene is associated with drought tolerane in maize seedlings. Nature Communications, 6, 1-13. Doi: 10.1038/ncomms9326
McClintock B. (1984). The significance of responses of the genome to challenge. Science, 226, 792-801. Doi: 10.1126/science.15739260
Smith L. M. (2015). Mechanism of transposable element evolution in plants and their effects on gene expression. In O. Pontes, H. Jin (Eds.), Nucelar function in plant transcription, signaling and development (pp. 133-164). New York, Springer. Doi: 10.1007/978-1-4939-2386-1_8
Stapley J. (2015). Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Molecular Ecology, 24, 2241-2252. Doi: 10.1111/mec.13089
Tsuchiya T., Eulgem T. (2013). An alternative polyadenylation mechanism coopted to the Arabidopsis RPP7 gene thorugh intronic retrotransposon domestication. PNAS, 110, E3535-E3543. Doi: 10.1073/pnas.1312545110
Wei L., Cao X. (2016). The effect of transposable elements on phenotypic variation: insights from plants to humans. Science China – Life Sciences, 59, 24-37. Doi: 10.1007/s11427-015-4993-2
Wicker T. (2012). So many repeats and so little time: How to classify transposable elements. In M.-A. Grandbastien, J. M. Casacuberta (Eds.), Plant transposable elements (pp. 1-15). Berlin, Heidelberg: Springer. Doi: 10.1007/978-3-642-31842-9_1
DOI: http://dx.doi.org/10.14720/aas.2016.107.2.21
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2016
##submission.license.cc.by-nc-nd4.footer##
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941