Vplivi salicilne kisline in njenih derivatov na rastline, škodljive in koristne organizme in njihove interakcije v okolju
Povzetek
Svetovna proizvodnja hrane je prisiljena v iskanje novih pristopov za zaščito rastlin pred škodljivimi organizmi in okoljskimi dejavniki. Ena izmed alternativ, bi lahko bila uporaba salicilne kisline (SA) in njenih derivatov. Na splošno so učinki SA na primarni ravni ekosistema, vzpodbudni, saj pripomorejo k izboljšani produktivnosti in kakovosti številnih rastlin ter izboljšujejo toleranco na številne stresorje. Sekundarna raven učinkov SA v okolju predstavlja učinke na škodljive organizme zaradi direktnega delovanja in tudi posrednih učinkov SA, ki nastanejo zaradi morfoloških in fizioloških sprememb, ko se rastlina prilagaja stresorjem. SA v veliko primerih vpliva na zmanjšanje okužb, na nekatere škodljivce pa deluje tudi odvračalno. Rastline po napadu škodljivega organizma sproščajo v okolje hlapne spojine, predvsem derivate SA kot je metilirana SA (MeSA). Ta privablja naravne sovražnike škodljivcev, kar bi se lahko uvedlo v varovanje rastlin pred škodljivimi organizmi, saj je bilo ugotovljeno pri številnih vrstah, da MeSA nanje deluje kot atraktant. Salicilati imajo zelo širok spekter delovanja, ki v okolju sprožajo različne vplive, ki se med seboj prepletajo in posledično vplivajo na več ravni v eksosistemu. V tem članku smo učinke salicilatov razdelili glede na različne nivoje v okolju, kar nam je dalo širši vpogled na potencialno uporabo salicilatov v kmetijstvu.
Ključne besede
Celotno besedilo:
PDFLiteratura
Abbasi, P. A., Ali, S., Braun, G., Bevis, E., & Fillmore, S. (2019). Reducing apple scab and frogeye or black rot infections with salicylic acid or its analogue on field-established apple trees. Canadian Journal of Plant Pathology, 41(3), 345-354. https://doi.org/10.1080/07060661.2019.1610070
Babalar, M., Asghari, M., Talaei, A., & Khosroshahi, A. (2007). Effect of pre-and postharvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Food Chemistry, 105(2), 449-453. https://doi.org/10.1016/j.foodchem.2007.03.021
Bektas, Y., & Eulgem, T. (2015). Synthetic plant defense elicitors. Frontiers in Plant Science, 5, 804. https://doi.org/10.3389/fpls.2014.00804
Bezemer, T. M., Wagenaar, R., Van Dam, N. M., & Wäckers, F. L. (2003). Interactions between above‐and belowground insect herbivores as mediated by the plant defense system. Oikos, 101(3), 555-562. https://doi.org/10.1034/j.1600-0706.2003.12424.x
B Blanch, G. P., Gómez-Jiménez, M. C., & Del Castillo, M. L. R. (2020). Exogenous salicylic acid improves phenolic content and antioxidant activity in table grapes. Plant Foods for Human Nutrition, 75(2), 177-183. https://doi.org/10.1007/s11130-019-00793-z
De Boer, J. G., & Dicke, M. (2004). The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. Journal of Chemical Ecology, 30(2), 255-271. https://doi.org/10.1023/B:JOEC.0000017976.60630.8c
Campbell, C. A. M., Pettersson, J., Pickett, J. A., Wadhams, L. J., & Woodcock, C. M. (1993). Spring migration of damson-hop aphid, Phorodon humuli (Homoptera, Aphididae), and summer host plant-derived semiochemicals released on feeding. Journal of Chemical Ecology, 19(7), 1569-1576. https://doi.org/10.1007/BF00984897
Chen, L., Wang, W. S., Wang, T., Meng, X. F., Chen, T. T., Huang, X. X., ... & Hou, B. K. (2019). Methyl salicylate glucosylation regulates plant defense signaling and systemic acquired resistance. Plant Physiology, 180(4), 2167-2181. https://doi.org/10.1104/pp.19.00091
Clarke, S. M., Mur, L. A., Wood, J. E., & Scott, I. M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. The Plant Journal, 38(3), 432-447. https://doi.org/10.1111/j.1365-313X.2004.02054.x
da Rocha Neto, A. C., Luiz, C., Maraschin, M., & Di Piero, R. M. (2016). Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits. International Journal of Food Microbiology, 221, 54-60. https://doi.org/10.1016/j.ijfoodmicro.2016.01.007
Dempsey, D. M. A., & Klessig, D. F. (2012). SOS–too many signals for systemic acquired resistance?. Trends inPplant Science, 17(9), 538-545. https://doi.org/10.1016/j.tplants.2012.05.011
Dempsey, D. M. A., Vlot, A. C., Wildermuth, M. C., & Klessig, D. F. (2011). Salicylic acid biosynthesis and metabolism. The Arabidopsis book/American Society of Plant Biologists, 9. https://doi.org/10.1199/tab.0156
Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J., & Posthumus, M. A. (1990). Plant strategies of manipulating predatorprey interactions through allelochemicals: prospects for application in pest control. Journal of Chemical Ecology, 16(11), 3091-3118. https://doi.org/10.1007/BF00979614
Dicke, M., Takabayashi, J., Posthumus, M. A., Schütte, C., & Krips, O. E. (1998). Plant—phytoseiid interactions mediated by herbivore-induced plant volatiles: variation in production of cues and in responses of predatory mites. Experimental & Applied Acarology, 22(6), 311-333. https://doi.org/10.1023/A:1024528507803
Dieryckx, C., Gaudin, V., Dupuy, J. W., Bonneu, M., Girard, V., & Job, D. (2015). Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea. Frontiers in Plant Science, 6, 859. https://doi.org/10.3389/fpls.2015.00859
Durner, J., Shah, J., & Klessig, D. F. (1997). Salicylic acid and disease resistance in plants. Trends in Plant Science, 2(7), 266-274. https://doi.org/10.1016/S1360-1385(97)86349-2
Falcioni, T., Ferrio, J. P., Del Cueto, A. I., Giné, J., Achón, M. Á., & Medina, V. (2014). Effect of salicylic acid treatment on tomato plant physiology and tolerance to potato virus X infection. European Journal of Plant Pathology, 138(2), 331-345. https://doi.org/10.1007/s10658-013-0333-1
Filgueiras, C. C., Martins, A. D., Pereira, R. V., & Willett, D. S. (2019). The ecology of salicylic acid signaling: primary, secondary and tertiary effects with applications in agriculture. International Journal of Molecular Sciences, 20(23), 5851. https://doi.org/10.3390/ijms20235851
Filgueiras, C. C., Willett, D. S., Junior, A. M., Pareja, M., Borai, F. E., Dickson, D. W., ... & Duncan, L. W. (2016). Stimulation of the salicylic acid pathway aboveground recruits entomopathogenic nematodes belowground. PloS One, 11(5), e0154712. https://doi.org/10.1371/journal.pone.0154712
Forouhar, F., Yang, Y., Kumar, D., Chen, Y., Fridman, E., Park, S. W., ... & Tong, L. (2005). Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proceedings of the National Academy of Sciences, 102(5), 1773-1778. https://doi.org/10.1073/pnas.0409227102
Gačnik, S., Munda, A., & Petkovšek, M. M. (2019). Effect of salicylic and methyl-salicylic acid on mycelial growth of different fungi and on infection of apple fruits with Monilinia laxa. Zbornik predavanj in referatov, 14. slovensko posvetovanje o varstvu rastlin z mednarodno udeležbo, 5.-6. marec 2019, Maribor, Slovenija, 513-518.
Gačnik, S., Veberič, R., Hudina, M., Koron, D., & Mikulič-Petkovšek, M. (2021). Salicylate treatment affects fruit quality and also alters the composition of metabolites in strawberries. Horticulturae, 7(10), 400. https://doi.org/10.3390/horticulturae7100400
Gacnik, S., Veberič, R., Hudina, M., Marinovic, S., Halbwirth, H., & Mikulič-Petkovšek, M. (2021). Salicylic and methyl salicylic acid affect quality and phenolic profile of apple fruits three weeks before the harvest. Plants, 10(9), 1807. https://doi.org/10.3390/plants10091807
Gačnik, S., Veberič, R., Marinović, S., Halbwirth, H., & Mikulič-Petkovšek, M. (2021). Effect of pre-harvest treatments with salicylic and methyl salicylic acid on the chemical profile and activity of some phenylpropanoid pathway related enzymes in apple leaves. Scientia Horticulturae, 277, 109794. https://doi.org/10.1016/j.scienta.2020.109794
Ghasemzadeh, A., Jaafar, H. Z., & Karimi, E. (2012). Involvement of salicylic acid on antioxidant and anticancer properties, anthocyanin production and chalcone synthase activity in ginger (Zingiber officinale Roscoe) varieties. International Journal of Molecular Sciences, 13(11), 14828-14844. https://doi.org/10.3390/ijms131114828
Geervliet, J. B., Posthumus, M. A., Vet, L. E., & Dicke, M. (1997). Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. Journal of Chemical Ecology, 23(12), 2935-2954. https://doi.org/10.1023/A:1022583515142
Giménez, M. J., Serrano, M., Valverde, J. M., Martínez‐Romero, D., Castillo, S., Valero, D., & Guillen, F. (2017). Preharvest salicylic acid and acetylsalicylic acid treatments preserve quality and enhance antioxidant systems during postharvest storage of sweet cherry cultivars. Journal of the Science of Food and Agriculture, 97(4), 1220-1228. https://doi.org/10.1002/jsfa.7853
Groux, R., Hilfiker, O., Gouhier-Darimont, C., Peñaflor, M. F. G. V., Erb, M., & Reymond, P. (2014). Role of methyl salicylate on oviposition deterrence in Arabidopsis thaliana. Journal of Chemical Ecology, 40(7), 754-759. https://doi.org/10.1007/s10886-014-0470-9
Hajek, A. E., & Eilenberg, J. (2018). Natural enemies: an introduction to biological control. Cambridge University Press. https://doi.org/10.1017/9781107280267
Halim, V. A., Eschen-Lippold, L., Altmann, S., Birschwilks, M., Scheel, D., & Rosahl, S. (2007). Salicylic acid is important for basal defense of Solanum tuberosum against Phytophthora infestans. Molecular Plant-Microbe Interactions, 20(11), 1346-1352. https://doi.org/10.1094/MPMI-20-11-1346
Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany, 68(1), 14-25. https://doi.org/10.1016/j.envexpbot.2009.08.005
Hayat, S., Ali, B., & Ahmad, A. (2007). Salicylic acid: biosynthesis, metabolism and physiological role in plants. In Salicylic acid: A plant hormone (pp. 1-14). Springer, Dordrecht. https://doi.org/10.1007/1-4020-5184-0
Huang, R. H., Liu, J. H., Lu, Y. M., & Xia, R. X. (2008). Effect of salicylic acid on the antioxidant system in the pulp of ‘Cara cara’navel orange (Citrus sinensis (L.) Osbeck) at different storage temperatures. Postharvest Biology and Technology, 47(2), 168-175. https://doi.org/10.1016/j.postharvbio.2007.06.018
Janda, T., Horváth, E., Szalai, G., & Paldi, E. (2007). Role of salicylic acid in the induction of abiotic stress tolerance. In Salicylic acid: A plant hormone (pp. 91-150). Springer, Dordrecht. https://doi.org/10.1007/1-4020-5184-0_5
Janda, T., Szalai, G., & Pál, M. (2020). Salicylic acid signalling in plants. International Journal of Molecular Sciences, 21(7), 2655. https://doi.org/10.3390/ijms21072655
Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2013). Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany, 64(8), 2255-2268. https://doi.org/10.1093/jxb/ert085
Joyce, D. C., Wearing, H., Coates, L., & Terry, L. (2001). Effects of phosphonate and salicylic acid treatments on anthracnose disease development and ripening of ‚Kensington Pride‘ mango fruit. Australian Journal of Experimental Agriculture, 41(6), 805-813. https://doi.org/10.1071/EA99104
Klessig, D. F., Choi, H. W., & Dempsey, D. M. A. (2018). Systemic acquired resistance and salicylic acid: past, present, and future. Molecular Plant-Microbe Interactions, 31(9), 871-888. https://doi.org/10.1094/MPMI-03-18-0067-CR
Klessig, D. F., & Malamy, J. (1994). The salicylic acid signal in plants. Plant Molecular Biology, 26(5), 1439-1458. https://doi.org/10.1007/BF00016484
Kumar, D. (2014). Salicylic acid signaling in disease resistance. Plant Science, 228, 127-134. https://doi.org/10.1016/j.plantsci.2014.04.014
Lefevere, H., Bauters, L., & Gheysen, G. (2020). Salicylic acid biosynthesis in plants. Frontiers in Plant Science, 11, 338. https://doi.org/10.3389/fpls.2020.00338
van Lith, R., & Ameer, G. A. (2016). Antioxidant polymers as biomaterial. In Oxidative Stress and Biomaterials (pp. 251-296). Academic Press. https://doi.org/10.1016/B978-0-12-803269-5.00010-3
Liu, P., Xu, Z. S., Pan-Pan, L., Hu, D., Chen, M., Li, L. C., & Ma, Y. Z. (2013). A wheat PI4K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis. Journal of Experimental Botany, 64(10), 2915-2927. https://doi.org/10.1093/jxb/ert133
Lortzing, V., Oberländer, J., Lortzing, T., Tohge, T., Steppuhn, A., Kunze, R., & Hilker, M. (2019). Insect egg deposition renders plant defence against hatching larvae more effective in a salicylic acid‐dependent manner. Plant, Cell & Environment, 42(3), 1019-1032. https://doi.org/10.1111/pce.13447
Mallinger, R. E., Hogg, D. B., & Gratton, C. (2011). Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. Journal of Economic Entomology, 104(1), 115-124. https://doi.org/10.1603/EC10253
Martínez-Esplá, A., Serrano, M., Valero, D., Martínez-Romero, D., Castillo, S., & Zapata, P. J. (2017). Enhancement of antioxidant systems and storability of two plum cultivars by preharvest treatments with salicylates. International Journal of Molecular Sciences, 18(9), 1911. https://doi.org/10.3390/ijms18091911
Martínez‐Esplá, A., Zapata, P. J., Valero, D., Martínez‐Romero, D., Díaz‐Mula, H. M., & Serrano, M. (2018). Preharvest treatments with salicylates enhance nutrient and antioxidant compounds in plum at harvest and after storage. Journal of the Science of Food and Agriculture, 98(7), 2742-2750. https://doi.org/10.1002/jsfa.8770
Martel, A. B., & Qaderi, M. M. (2016). Does salicylic acid mitigate the adverse effects of temperature and ultraviolet-B radiation on pea (Pisum sativum) plants? Environmental and Experimental Botany, 122, 39-48. https://doi.org/10.1016/j.envexpbot.2015.09.002
Metwally, A., Finkemeier, I., Georgi, M., & Dietz, K. J. (2003). Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 132(1), 272-281. https://doi.org/10.1104/pp.102.018457
Mishra, A., & Choudhuri, M. A. (1999). Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum, 42(3), 409-415. https://doi.org/10.1023/A:1002469303670
De Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T., & Tumlinson, J. H. (1998). Herbivore-infested plants selectively attract parasitoids. Nature, 393(6685), 570-573. https://doi.org/10.1038/31219
Nirupama, P., Gol, N. B., & Rao, T. R. (2010). Effect of post harvest treatments on physicochemical characteristics and shelf life of tomato (Lycopersicon esculentum Mill.) fruits during storage. American-Eurasian Journal of Agricultural & Environmental Sciences, 9(5), 470-479.
Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S., & Klessig, D. F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318(5847), 113-116. https://doi.org/10.1126/science.1147113
Paterson, J. R., Baxter, G., Dreyer, J. S., Halket, J. M., Flynn, R., & Lawrence, J. R. (2008). Salicylic acid sans aspirin in animals and man: persistence in fasting and biosynthesis from benzoic acid. Journal of Agricultural and Food Chemistry, 56(24), 11648-11652. https://doi.org/10.1021/jf800974z
Pravilnikom o biotičnem varstvu rastlin. Ur. l. RS št. 45/06
Pulga, P. S., Henshel, J. M., Resende, J. T. V. D., Zeist, A. R., Moreira, A. F. P., Gabriel, A., ... & Gonçalves, L. S. A. (2020). Salicylic acid treatments induce resistance to Tuta absoluta and Tetranychus urticae on tomato plants. Horticultura Brasileira, 38, 288-294. https://doi.org/10.1590/s0102-053620200308
Raskin, I. (1992). Salicylate, a new plant hormone. Plant Physiology, 99(3), 799. https://doi.org/10.1104/pp.99.3.799
Schlösser, E. (1999). Učinkovitost in omejitve pri izrabi sistemično aktivirane odpornosti (SAR) proti rastlinskim patogenom. Zb Pred Ref 4 Slov posvetovanje o varstvu Rastl, 3.-4. marec 1999, Portorož, Slov.: 1-6.
Shah, J. (2003). The salicylic acid loop in plant defense. Current Opinion in Plant Biology, 6(4), 365-371. https://doi.org/10.1016/S1369-5266(03)00058-X
Shah, J., & Zeier, J. (2013). Long-distance communication and signal amplification in systemic acquired resistance. Frontiers in Plant Science, 4, 30. https://doi.org/10.3389/fpls.2013.00030
Shulaev, V., Silverman, P., & Raskin, I. (1997). Airborne signalling by methyl salicylate in plant pathogen resistance. Nature, 385(6618), 718-721. https://doi.org/10.1038/385718a0
Siboza, X. I., Bertling, I., & Odindo, A. O. (2014). Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon). Journal of Plant Physiology, 171(18), 1722-1731. https://doi.org/10.1016/j.jplph.2014.05.012
Stella de Freitas, T. F., Stout, M. J., & Sant‘Ana, J. (2019). Effects of exogenous methyl jasmonate and salicylic acid on rice resistance to Oebalus pugnax. Pest Management Science, 75(3), 744-752. https://doi.org/10.1002/ps.5174
Stout, M. J., Fidantsef, A. L., Duffey, S. S., & Bostock, R. M. (1999). Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiological and Molecular Plant Pathology, 54(3-4), 115-130. https://doi.org/10.1006/pmpp.1998.0193
Strobel, N. E., & Kuc, J. A. (1995). Chemical and biological inducers of systemic resistance to pathogens protect cucumber and tobacco plants from damage caused by paraquat and cupric chloride. Phytopathology (USA). https://doi.org/10.1094/Phyto-85-1306
Tareen, M. J., Abbasi, N. A., & Hafiz, I. A. (2012). Effect of salicylic acid treatments on storage life of peach fruits cv.‘Flordaking’. Pakistan Journal of Botany, 44(1), 119-124.
Trdan, S., Valič, N., Jerman, J., Ban, D., & Žnidarčič, D. (2004). Efficacy of three natural chemicals to reduce the damage of Erysiphe cichoracearum on chicory in two meteorologically different growing seasons. Journal of Phytopathology, 152(10), 567-574. https://doi.org/10.1111/j.1439-0434.2004.00897.x
Trdan, S., Žnidarčič, D., Vidrih, M., & Kač, M. (2008). Three natural substances for use against Alternaria cichorii on selected varieties of endive: antifungal agents, plant strengtheners, or foliar fertilizers?. Journal of Plant Diseases and Protection, 115(2), 63-68. https://doi.org/10.1007/BF03356240
Trdan, S., Laznik, Ž., & Bohinc, T. (2020). Thirty years of research and professional work in the field of biological control (predators, parasitoids, entomopathogenic and parasitic nematodes) in Slovenia: a review. Applied Sciences, 10(21), 7468. https://doi.org/10.3390/app10217468
Valverde, J. M., Giménez, M. J., Guillen, F., Valero, D., Martinez-Romero, D., & Serrano, M. (2015). Methyl salicylate treatments of sweet cherry trees increase antioxidant systems in fruit at harvest and during storage. Postharvest Biology and Technology, 109, 106-113. https://doi.org/10.1016/j.postharvbio.2015.06.011
van Poecke, R. M., & Dicke, M. (2002). Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathway. Journal of Experimental Botany, 53(375), 1793-1799. https://doi.org/10.1093/jxb/erf022
Vlot, A. C., Dempsey, D. M. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177-206. https://doi.org/10.1146/annurev.phyto.050908.135202
Wang, L., & Li, S. (2008). Role of salicylic acid in postharvest physiology. Fresh Produce, 2(1), 1-5.
Wang, Y. Y., Li, B. Q., Qin, G. Z., Li, L., & Tian, S. P. (2011). Defense response of tomato fruit at different maturity stages to salicylic acid and ethephon. Scientia Horticulturae, 129(2), 183-188. https://doi.org/10.1016/j.scienta.2011.03.021
Wang, Z., Ma, L., Zhang, X., Xu, L., Cao, J., & Jiang, W. (2015). The effect of exogenous salicylic acid on antioxidant activity, bioactive compounds and antioxidant system in apricot fruit. Scientia Horticulturae, 181, 113-120. https://doi.org/10.1016/j.scienta.2014.10.055
War, A. R., Paulraj, M. G., Ignacimuthu, S., & Sharma, H. C. (2015). Induced resistance to Helicoverpa armigera through exogenous application of jasmonic acid and salicylic acid in groundnut, Arachis hypogaea. Pest Management Science, 71(1), 72-82. https://doi.org/10.1002/ps.3764
Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414(6863), 562-565. https://doi.org/10.1038/35107108
Yalpani, N., León, J., Lawton, M. A., & Raskin, I. (1993). Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiology, 103(2), 315-321. https://doi.org/10.1104/pp.103.2.315
Yao, H., & Tian, S. (2005). Effects of pre-and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biology and Technology, 35(3), 253-262. https://doi.org/10.1016/j.postharvbio.2004.09.001
Zanelli, B., Ocvirk, M., Jože Košir, I., Vidrih, M., Bohinc, T., & Trdan, S. (2022). Environmental parameters and fertilisers as factors affecting the salicylic acid and total polyphenol contents in sport turfgrasses. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 72(1), 81-91. https://doi.org/10.1080/09064710.2021.1990390
Zhang, K., Halitschke, R., Yin, C., Liu, C. J., & Gan, S. S. (2013). Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proceedings of the National Academy of Sciences, 110(36), 14807-14812. https://doi.org/10.1073/pnas.1302702110
Zhang, Y., & Li, X. (2019). Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 50, 29-36. https://doi.org/10.1016/j.pbi.2019.02.004
Zhang, H., Ma, L., Wang, L., Jiang, S., Dong, Y., & Zheng, X. (2008). Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters. Biological Control, 47(1), 60-65. https://doi.org/10.1016/j.biocontrol.2008.06.012
DOI: http://dx.doi.org/10.14720/aas.2023.119.1.2953
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2023 Saša GAČNIK, Stanislav TRDAN, Maja MIKULIČ-PETKOVŠEK
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941