Učinki gnojenja s fosforjem in dodatkov sevov bakterije Pseudomonas fluorescens na rast in pridelek poljskega graha (P. sativum subsp. arvense (L.) Asch.)

Bahram SALEHI, Hashem AMINPANAH

Povzetek


Z namenom ovrednotenja vplivov gnojenja z različnimi odmerki fosfornih gnojil in dodatkov sevov bakterije Pseudomonas fluorescens na rast in pridelek poljskega graha (P. sativum subsp. arvense (L.) Asch.) je bil izveden poljski poskus v provinci Rezvanshahr, Guilan, Iran. Načrt poskusa je bil naključni bločni faktorski poskus s tremi ponovitvami. Faktorji v poskusu so bili gnojenje s fosforjem (0, 25, 50, 75 in 100 kg P2O5 ha-1, kot trojni superfosfat) in inokulacija semen s sevi bakterije P. florescens (kontrola (ne inokulirano), inokulirano s sevom R41 in sevom R187). Analiza variance je pokazala, da so na parametre kot so višina rastlin, pridelek zrnja, število strokov na m2, masa 100-semen, biološki pridelek, žetveni indeks in vsebnost P značilno vplivala gnojenja s fosforjem in inokulacija s sevi bakterije P. florescens, vendar je imelo hkratno gnojenje s fosforjem in inokulacija s sevi bakterije P. fluorescens značilen vpliv le na maso 100-semen. Po drugi strani se število semen na strok ni značilno spremenilo niti z različnimi odmerki fosforja niti z dodatki sevov bakterij. Rezultati so pokazali, da se je pridelek zrnja značilno povečal od 1099 ± 67 na 1898 ± 118 kg ha-1, ko se je uporaba P2O5 povečala iz 0 na 75 kg ha-1, in je potem ostal relativno konstanten. Med rastlinami, katerih semena so bila inokulirana s sevom bakterije P. fluorescens,  R187 (1664 ± 97 kg ha-1) in tistimi, katerih semena so bila inokulirana s sevom P. fluorescens, R41 (1669 ± 104 kg ha-1) ni bilo značilnih razlik v pridelku zrnja, vendar je bil pridelek zrnja inokuliranih rastlin pri obeh sevih večji od neinokuliranih rastlin (1370 ± 80 kg ha-1). Na osnovi izsledkov te raziskave lahko za doseganje večjih pridelkov poljskega graha priporočamo gnojenje s fosforjevimi gnojili v odmerku 75 kg, P2O5 ha-1 s hkratno inokulacijo s sevi zgoraj omenjenih bakterij.

Ključne besede


gnojenje; fosforjeva gnojila; rast-stimulirajoče rizobakterije; Pisum sativum

Celotno besedilo:

PDF (English)

Literatura


Adesemoye A.O., Torbert H.A., Kloepper J.W. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58:921–929, doi: 10.1007/s00248-009-9531-y

Ali H., Khan M.A., Randhawa S.A. 2004. Interactive effect of seed inoculation and phosphorus application on growth and yield of chickpea (Cicer arietinum L.). International Journal of Agriculture and Biology, 6, 1: 110–112

Assuero S.G., Mollier A., Pellerin S. 2004. The decrease in growth of pho sphorus-deficient maize leaves is related to a lower cell production. Plant, Cell and Environment, 27: 887–895, doi: 10.1111/j.1365-3040.2004.01194.x

Benhamou N., Belanger R.R., Paulitz T., 1996b. Ultrastructural and cytochemical aspects of the interaction between Pseudomonas fluorescens and Ri T-DNA transformed pea roots: host response to colonization by Pythium ultimum Trow. Planta, 199: 105–117, doi: 10.1007/BF00196887

Benhamou N., Kloepper J.W., Quadt-Hallmann A., Tuzun S., 1996a. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiology, 112: 919–929

Bhattacharyya P.N., Jha D.K. 2012. Plant growth- promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28:1327–1350, doi: 10.1007/s11274-011-0979-9

Chung H., Park M., Madhaiyan M., Seshadri S., Song J., Cho H., Sa T. 2005. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of cr op plants of Korea. Soil Biology and Biochemistry, 37: 1970–1974, doi: 10.1016/j.soilbio.2005.02.025

Dashti N., Zhang F., Hynes R., Smith D.L. 1998. Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant and Soil, 200:205–213, doi: 10.1023/A:1004358100856

Davison J. 1988. Plant beneficial bacteria. Natural Biotechnology, 6:282–286, doi: 10.1038/nbt0388- 282

De Meyer G., Hofte M. 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology, 87: 58– 593, doi: 10.1094/PHYTO.1997.87.6.588

Dey R., Pal K.K., Bhatt D.M., Chauhan S.M. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research, 159, 371–394, doi: 10.1016/j.micres.2004.08.004

Ferreira J.S., Baldani J.I., Baldani V.L.D. 2010. Selecao de bactérias diazotroficas em duas variedades de arroz. Acta Scientiarum Agronomy, 32: 179–185, doi: 10.4025/actasciagron.v32i1.732

Figueiredo M.V.B., Seldin L., Araujo F.F., Mariano R.L.R. 2011. Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari, D.K. (Ed.), Plant Growth and Health romoting Bacteria. Springer-Verlag, Berlin, Heidelberg, pp. 21–42

Food and Agricultural Organization (FAO). 2012. FAOSTAT statistics database [Online]. Available at http:// http://faostat.fao.org

Grimes H.D., Mount M.S. 1984. Influence of Pseudomonas putida on nodulation of Phaseolus vulgaris . Soil Biology and Biochemistry, 16:27–30, doi: 10.1016/0038-0717(84)90121-4

Gulati A., Sharma N., Vyas P., Sood S., Rahi P., Pathania V., Prasad R. 2010. Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans- Himalayas. Archive der Microbiology, 192: 975– 983, doi: 10.1007/s00203-010-0615-3

Gyaneshwar P., Kumar G.N., Parekh L.J., Poole P.S. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 245:83–93, doi: 10.1023/A:1020663916259

Hussain N., Khan A.Z., Akbar H., Akhtar S. 2006. Growth factors and yield of maize as influenced by phosphorus and potash fertilization. Sarhad Journal of Agriculture, 22, 4: 579–583

Kavanova ́ M., Lattanzi F.A., Grimoldi A.A., Schnyder H. 2006. Phosphorus De ficiency Decreases Cell Division and Elongation in Grass Leaves. Plant Physiology, 141:766–775, doi: 10.1104/pp.106.079699

Khan M.S., Zaidi A., Wani P.A. 2006. Role of phosphatesolubilizing microorganisms in sustainable agriculture – a review. Agronomy for Sustainable Development, 27: 29–43, doi: 10.1051/agro:2006011

Leinhos V., Nacek O. 1994. Bi osynthesis of auxins by phosphate solubilizing rhizobacteria from wheat (Triticum aestivum ) and rye (Secale cereale ). Microbiology Research, 149: 31–35, doi: 10.1016/S0944-5013(11)80132-1

Li S.X., Li S.Q. 1992. Responses of wheat, hairy vetch and pea to phosphate fertilizer. Acta University Agriculturae Boreali-occidentalia, 20: 74–78

Li S.X., Wang Z.H., Stewart B.A. 2011 Differences of Some Leguminous and Nonleguminous Crops in Utilization of Soil Phosphorus and Responses to Phosphate Fertilizers. Advances in Agronomy, 110: 126-249, doi: 10.1016/B978-0-12-385531- 2.00003-7

Li, S.X., Zhao, B.S. 1990. Th e effect of soil nitrogen supplying capacity on phosphate fertilizer efficiency for some legu me crops and non-legume crops. Soil Fertility, 4: 19–23

Lin C.G., Li Z.P., Zhang Y. H., Zou Q.X. 1964. Study on improvement of P fertilizer effect in the calcareous brown soil areas of Shanxi Province. Chinese Journal of Soil Science, 1: 4–12

Lowry O., Lopez A. 1946. Determination of inorganic phosphate in the presents of labile phosphate esters. Journal of Biological Chemistry, 162: 421-426

Raghothama K.G., Karthikeyan A.S. 2005. Phosphate acquisition. Plant and Soil, 274: 37–49, doi: 10.1007/s11104-004-2005-6

Roy S.K., Rahaman S.M.L., Salahuddin A.B.M. 1995. Effect of Rhizobium inoculation and nitrogen on nodulation, growth and seed yield of gram (Cicer arietinum L.). Indian Journal of Agronomy, 65: 853–7

Saravanakumara D., Vijayakumarc C., Kumarb N., Samiyappan R. 2007. PGPR-induced defense responses in the tea plant against blister blight disease. Crop Protection, 26: 556–565, doi: 10.1016/j.cropro.2006.05.007

SAS. 2004. SAS Institute, version 9.1.3. Cary, NC, USA

Sgroy V., Cassan F., Masciarelli O., Del Papa M.F., Lagares A., Luna V. 2009. Isolation and characterization of endophytic plant growth- promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associ ated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology, 85:371–381, doi: 10.1007/s00253- 009-2116-3

Shaharoona, B., Naveed, M., Arshad, M., Zahir, Z.A., 2008. Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Applied Microbiology and Biotechnology, 79: 147–155, doi: 10.1007/s00253-008-1419-0

Sharma A, Johri B.N., Sharma, AK., Glick B.R. 2003 Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biology and Biochemistry, 3: 887–894, doi: 10.1016/S0038- 0717(03)00119-6

Urbano G., Aranda P., Gomez-Villalva E. 2003. Nutritional evaluation of pea (Pisum sativum L.) protein diets after mild hydrothermal treatment and with and without added phytase. Journal of Agricultural and Food Chemistry, 51: 2415–2420, doi: 10.1021/jf0209239

Van Elsas J.D., Van Overbeek L.S., Fouchier R. 1991. A specific marker, pat, for studying the fate of introduced bacteria and their DNA in soil using a combination of detection techniques. Plant and Soil, 138: 49–60, doi: 10.1007/BF00011807




DOI: http://dx.doi.org/10.14720/aas.2015.105.2.04

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2015 Acta agriculturae Slovenica

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941