UČINKI SILICIJA IN TITANA NA RAST ŽAFRANIKE (Carthamus tinctorius L.) V RAZMERAH POMANKANJA VODE
Povzetek
Ključne besede
Celotno besedilo:
PDF (English)Literatura
Asadzade, N., Moosavi, S. G., Seghatoleslami, M. J. (2015). Effect of low irrigation and Zn and SiO2 nano-fertilizers and conventional fertilizers on morphophysiological traits and seed yield of sunflower. Biological Forum, 7(1), 357-364.
Asli, S., Neumann, P.M. (2009). Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell & Environment, 32, 577-584. doi:10.1111/j.1365-3040.2009.01952.x
Darinkaboud, B. A., GharibiAsl, S. (2016). The oil and protein content of Isfahahn’s safflower seed in different periods of irrigation, levels of humic acid and superabsorbent. International Journal of Life Sciences and Pharma Research, Special Issue, 56-63.
Eneji, A. E., Inanaga, S., Muranaka, S., Li, J., Hattori, T., An, P., Tsuji, W. (2008). Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilisers. Journal of Plant Nutrition, 31, 355-365. doi:10.1080/01904160801894913
Fatichi, S., Leuzinger, S., Körner, C. (2014). Moving beyond photosynthesis: from carbon source to sink‐driven vegetation modeling. New Phytologist, 201(4), 1086-1095. doi:10.1111/nph.12614
Fauteux, F., Remus-Borel, W., Menzies, J. G., Bélanger, R. R. (2005). Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letter, 249, 1–6. doi:10.1016/j.femsle.2005.06.034
Frazier, T. P., Burklew, C. E., Zhang, B. (2013). Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Functional & Integrative Genomics, Available online, doi:10.1007/s10142-013-0341-4
Haghighati-Malek, A., Ferri, F. (2014). Effects of nitrogen and phosphorus fertilizers on safflower yield in dry lands condition. International Journal of Research in Agricultural Sciences, 1, 2348-3997.
Hattori, T., Inanaga, H., Araki, H., An, P., Morita, S., Luxova, M., Lux A. (2005). Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123, 459-466. doi:10.1111/j.1399-3054.2005.00481.x
Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., Yang, P. (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 105 (1-3), 269-279. doi:10.1385/BTER:105:1-3:269
Hussain, M. I., Lyra, D. A., Farooq, M., Nikoloudakis, N., Khalid, N. (2016). Salt and drought stresses in safflower: a review. Agronomy for Sustainable Development, 36 (1), 4-13. doi:10.1007/s13593-015-0344-8
Janmohammadi, M., Amanzadeh, T., Sabaghnia, N., Dashti, S. (2016a). Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agriculturae Slovenica, 107(2), 265-276. doi:10.14720/aas.2016.107.2.23
Janmohammadi, M., Amanzadeh, T., Sabaghnia, N., Ion, V. (2016b). Effect of nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes. Botanica Lithuanica, 22(1), 53-64. doi: doi:10.1515/botlit-2016-0005
Karimi, J., Mohsenzadeh, S. (2016). Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russian Journal of Plant Physiology, 63(1), 119-123. doi:10.1134/S1021443716010106
Kaya, C., Tuna, L., Higgs, D. (2006). Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. Journal of Plant Nutrition, 29(8), 1469-1480. doi:10.1080/01904160600837238
Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protection, 35, 64-70. doi:10.1016/j.cropro.2012.01.007
Lei, Z., Mingyu, S., Xiao, W., Chao, L., Chunxiang, Q., Liang, C., Fashui, H. (2007). Effects of nano-anatase on spectral characteristics and distribution of LHCII on the thylakoid membranes of spinach. Biological Trace Element Research, 120 (1-3), 273-283. doi:10.1007/s12011-007-8025-3
Lei Z., Mingyu S., Xiao W., Chao L., Chunxiang Q., Liang C., Hao H, Xiaoqing L, Fashui, H. 2008. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biological Trace Element Research, 121(1), 69-79. doi:10.1007/s12011-007-8028-0
Liu, R., Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514, 131-139. doi:10.1016/j.scitotenv.2015.01.104
Ma, J. F., Miyake, Y., Takahashi, E. 2001. Silicon as a beneficial element for crop plants, in Silicon in Agriculture, (Eds.) New York, NY: Elsevier Science Publishing, 17–39. doi:10.1016/S0928-3420(01)80006-9
Ma, J. F., Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392-397. doi:10.1016/j.tplants.2006.06.007
Ma, J.F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50, 11-18. doi: 10.1080/00380768.2004.
Mandeh, M., Omidi, M., Rahaie, M. (2012). In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgareL.) tissue culture. Biological trace element research, 150(1-3), 376-380. doi:10.1007/s12011-012-9480-z
Mastronardi, E., Tsae, P., Zhang, X., Monreal, C., DeRosa, M. C. (2015). Strategic role of nanotechnology in fertilizers: potential and limitations. In Nanotechnologies in Food and Agriculture (pp. 25-67). Springer International Publishing. Switzerland, Cham. doi:10.1007/978-3-319-14024-7_2
Morteza, E., Moaveni, P., Farahani, H. A., Kiyani, M. (2013). Study of photosynthetic pigments changes of maize (Zea mays L.) under nano Tio2 spraying at various growth stages. SpringerPlus, 2(1), 1-5. doi.10.1186/2193-1801-2-247
Murungweni, C., Wijk, M. T., Smaling, E. M. A., Giller, K. E. (2016). Climate-smart crop production in semi-arid areas through increased knowledge of varieties, environment and management factors. Nutrient Cycling in Agroecosystems, 105(3), 183-197. doi:10.1007/s10705-015-9695-4
Pei, Z.F., Ming, D. F., Liu, D., Wan, G. L., Geng, X. X., Gong H. J., Zhou, W. J. (2010). Silicon improves the tolerance of water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. Journal of Plant Growth Regulation, 29, 106-115. doi:10.1007/s00344-009-9120-9
Pessarakli, M. (2014). Handbook of plant and crop physiology. CRC Press. United State, Florida.
Rudolphi, S., Becker, H. C., Schierholt, A., von Witzke-Ehbrecht, S. (2012). Improved estimation of oil, linoleic and oleic acid and seed hull fractions in safflower by NIRS. Journal of the American Oil Chemists' Society, 89(3), 363-369. doi:10.1007/s11746-011-1920-y
Sahebi, M., Hanafi, M. M., Siti Nor Akmar, A., Rafii, M. Y., Azizi, P., Tengoua, F., Mayzaitul Azwa, F., Shabanimofrad, M. (2015). Importance of silicon and mechanisms of bio-silica formation in plants. BioMed research international, 1-16. doi:10.1155/2015/396010
Sabaghnia, N., Ahadnezhad, A., Janmohammdi, M. (2015). Genetic variation in garden cress (Lepidium sativum L.) germplasm as assessed by some morphological traits. Genetic Resources and Crop Evolution, 5(62): 733-745. doi:10.1007/s10722-014-0192-4
Sangakkara, H. R., Hartwig, U. A., Nosberger, J. (1996). Response of root branching and shoot water potential of Phaeseolus valgaris L. to soil moisture and fertilizer potassium. Journal of Agronomy and Crop Science, 177, 165–173. doi:10.1111/j.1439-037X.1996.tb00234.x
Shahrokhnia, M. H., Sepaskhah, A. R. (2017). Physiologic and agronomic traits in safflower under various irrigation strategies, planting methods and nitrogen fertilization. Industrial Crops and Products, 95, 126-139. doi:10.1016/j.indcrop.2016.10.021
Shi, Y., Zhang, Y., Han, W., Feng, R., Hu, Y., Guo, J., Gong, H. (2016). Silicon Enhances Water Stress Tolerance by Improving Root Hydraulic Conductance in Solanum lycopersicum L. Frontiers in plant science, 7. doi:10.3389/fpls.2016.00196
UN (United Nations Department of Economic and Social Affairs, Population Division), (2013). World Population Prospects: the 2012 Revision.
Yang, F., Hong, F., You, W., Liu C., Gao, F., Wu, C., Yang, P. (2006). Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110 (2), 179-190. doi:10.1385/BTER:110:2:179
Zheng, L., Hong, F., Lu, S., Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research. 104, 83e91. doi:10.1385/BTER:104:1:083
DOI: http://dx.doi.org/10.14720/aas.2017.109.2.27
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2017
##submission.license.cc.by-nc-nd4.footer##
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941