UČINKI SILICIJA IN TITANA NA RAST ŽAFRANIKE (Carthamus tinctorius L.) V RAZMERAH POMANKANJA VODE

Mohsen Janmohammadi, Nasrin Mohamadi, Fariborz SHEKARI, Amin ABBASI, Mohammad ESMAILPOUR

Povzetek


Žafranika je pomembna poljščina v semiaridnih območjih, kjer so padavine omejene. Z namenom ugotavljanja učinkov pršenja listov z nano-silicijevim (10 in 20 mM) in nano titanovim dioksidom (25 in 50 mM) ter stresa zaradi vodnega deficita (namakanje po 110 mm evaporacije) na rastne parametre in komponente pridelka pomladanske žafranike je bil izveden poljski poskus na višinskem semiaridnem območju severno zahodnega Irana. Vodni deficit je značilno zmanjšal morfološko-fiziološke lastnosti (pokritost tal, širino krošnje, svežo maso listov, listno površino in višino rastlin) kot tudi komponente pridelka (premer koška, maso semen in število semen na košek). Kljub temu so imele rastline, ki so rastle v razmerah pomanjkanja vode večji žetveni indeks kot dobro namakane. Primerjava foliarnih obravnavanj je pokazala, da so oboji nano delci (silicijevi in titanovi) izboljšali rast rastlin in komponente pridelka v primerjavi s kontrolo. Učinek silicijevih nano delcev je bil bolj izražen kot titanovih. Največja vsebnost olja v semenih je bila v dobro namakanih rastlinah (namakanje po 60 mm evaporacije) s foliarno dodajanimi nano delci titana. Odstotki palmitinske, arahidonske in miristične kisline v semenih so se povečali po uporabi nano titanovih delcev. Analiza glavnih komponent je pokazala, da je bilo pršenje z 10 mM nano silicijeva dioksida najboljše foliarno obravnavanje pri vseh vodnih režimih.

Ključne besede


žafranika; agronomske lastnosti; foliarno pršenje; nano-delci; analiza glavnih komponent; semiaridna območja

Celotno besedilo:

PDF (English)

Literatura


Asadzade, N., Moosavi, S. G., Seghatoleslami, M. J. (2015). Effect of low irrigation and Zn and SiO2 nano-fertilizers and conventional fertilizers on morphophysiological traits and seed yield of sunflower. Biological Forum, 7(1), 357-364.

Asli, S., Neumann, P.M. (2009). Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell & Environment, 32, 577-584. doi:10.1111/j.1365-3040.2009.01952.x

Darinkaboud, B. A., GharibiAsl, S. (2016). The oil and protein content of Isfahahn’s safflower seed in different periods of irrigation, levels of humic acid and superabsorbent. International Journal of Life Sciences and Pharma Research, Special Issue, 56-63.

Eneji, A. E., Inanaga, S., Muranaka, S., Li, J., Hattori, T., An, P., Tsuji, W. (2008). Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilisers. Journal of Plant Nutrition, 31, 355-365. doi:10.1080/01904160801894913

Fatichi, S., Leuzinger, S., Körner, C. (2014). Moving beyond photosynthesis: from carbon source to sink‐driven vegetation modeling. New Phytologist, 201(4), 1086-1095. doi:10.1111/nph.12614

Fauteux, F., Remus-Borel, W., Menzies, J. G., Bélanger, R. R. (2005). Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letter, 249, 1–6. doi:10.1016/j.femsle.2005.06.034

Frazier, T. P., Burklew, C. E., Zhang, B. (2013). Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Functional & Integrative Genomics, Available online, doi:10.1007/s10142-013-0341-4

Haghighati-Malek, A., Ferri, F. (2014). Effects of nitrogen and phosphorus fertilizers on safflower yield in dry lands condition. International Journal of Research in Agricultural Sciences, 1, 2348-3997.

Hattori, T., Inanaga, H., Araki, H., An, P., Morita, S., Luxova, M., Lux A. (2005). Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123, 459-466. doi:10.1111/j.1399-3054.2005.00481.x

Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., Yang, P. (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 105 (1-3), 269-279. doi:10.1385/BTER:105:1-3:269

Hussain, M. I., Lyra, D. A., Farooq, M., Nikoloudakis, N., Khalid, N. (2016). Salt and drought stresses in safflower: a review. Agronomy for Sustainable Development, 36 (1), 4-13. doi:10.1007/s13593-015-0344-8

Janmohammadi, M., Amanzadeh, T., Sabaghnia, N., Dashti, S. (2016a). Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agriculturae Slovenica, 107(2), 265-276. doi:10.14720/aas.2016.107.2.23

Janmohammadi, M., Amanzadeh, T., Sabaghnia, N., Ion, V. (2016b). Effect of nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes. Botanica Lithuanica, 22(1), 53-64. doi: doi:10.1515/botlit-2016-0005

Karimi, J., Mohsenzadeh, S. (2016). Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russian Journal of Plant Physiology, 63(1), 119-123. doi:10.1134/S1021443716010106

Kaya, C., Tuna, L., Higgs, D. (2006). Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. Journal of Plant Nutrition, 29(8), 1469-1480. doi:10.1080/01904160600837238

Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protection, 35, 64-70. doi:10.1016/j.cropro.2012.01.007

Lei, Z., Mingyu, S., Xiao, W., Chao, L., Chunxiang, Q., Liang, C., Fashui, H. (2007). Effects of nano-anatase on spectral characteristics and distribution of LHCII on the thylakoid membranes of spinach. Biological Trace Element Research, 120 (1-3), 273-283. doi:10.1007/s12011-007-8025-3

Lei Z., Mingyu S., Xiao W., Chao L., Chunxiang Q., Liang C., Hao H, Xiaoqing L, Fashui, H. 2008. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biological Trace Element Research, 121(1), 69-79. doi:10.1007/s12011-007-8028-0

Liu, R., Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514, 131-139. doi:10.1016/j.scitotenv.2015.01.104

Ma, J. F., Miyake, Y., Takahashi, E. 2001. Silicon as a beneficial element for crop plants, in Silicon in Agriculture, (Eds.) New York, NY: Elsevier Science Publishing, 17–39. doi:10.1016/S0928-3420(01)80006-9

Ma, J. F., Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392-397. doi:10.1016/j.tplants.2006.06.007

Ma, J.F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50, 11-18. doi: 10.1080/00380768.2004.

Mandeh, M., Omidi, M., Rahaie, M. (2012). In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgareL.) tissue culture. Biological trace element research, 150(1-3), 376-380. doi:10.1007/s12011-012-9480-z

Mastronardi, E., Tsae, P., Zhang, X., Monreal, C., DeRosa, M. C. (2015). Strategic role of nanotechnology in fertilizers: potential and limitations. In Nanotechnologies in Food and Agriculture (pp. 25-67). Springer International Publishing. Switzerland, Cham. doi:10.1007/978-3-319-14024-7_2

Morteza, E., Moaveni, P., Farahani, H. A., Kiyani, M. (2013). Study of photosynthetic pigments changes of maize (Zea mays L.) under nano Tio2 spraying at various growth stages. SpringerPlus, 2(1), 1-5. doi.10.1186/2193-1801-2-247

Murungweni, C., Wijk, M. T., Smaling, E. M. A., Giller, K. E. (2016). Climate-smart crop production in semi-arid areas through increased knowledge of varieties, environment and management factors. Nutrient Cycling in Agroecosystems, 105(3), 183-197. doi:10.1007/s10705-015-9695-4

Pei, Z.F., Ming, D. F., Liu, D., Wan, G. L., Geng, X. X., Gong H. J., Zhou, W. J. (2010). Silicon improves the tolerance of water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. Journal of Plant Growth Regulation, 29, 106-115. doi:10.1007/s00344-009-9120-9

Pessarakli, M. (2014). Handbook of plant and crop physiology. CRC Press. United State, Florida.

Rudolphi, S., Becker, H. C., Schierholt, A., von Witzke-Ehbrecht, S. (2012). Improved estimation of oil, linoleic and oleic acid and seed hull fractions in safflower by NIRS. Journal of the American Oil Chemists' Society, 89(3), 363-369. doi:10.1007/s11746-011-1920-y

Sahebi, M., Hanafi, M. M., Siti Nor Akmar, A., Rafii, M. Y., Azizi, P., Tengoua, F., Mayzaitul Azwa, F., Shabanimofrad, M. (2015). Importance of silicon and mechanisms of bio-silica formation in plants. BioMed research international, 1-16. doi:10.1155/2015/396010

Sabaghnia, N., Ahadnezhad, A., Janmohammdi, M. (2015). Genetic variation in garden cress (Lepidium sativum L.) germplasm as assessed by some morphological traits. Genetic Resources and Crop Evolution, 5(62): 733-745. doi:10.1007/s10722-014-0192-4

Sangakkara, H. R., Hartwig, U. A., Nosberger, J. (1996). Response of root branching and shoot water potential of Phaeseolus valgaris L. to soil moisture and fertilizer potassium. Journal of Agronomy and Crop Science, 177, 165–173. doi:10.1111/j.1439-037X.1996.tb00234.x

Shahrokhnia, M. H., Sepaskhah, A. R. (2017). Physiologic and agronomic traits in safflower under various irrigation strategies, planting methods and nitrogen fertilization. Industrial Crops and Products, 95, 126-139. doi:10.1016/j.indcrop.2016.10.021

Shi, Y., Zhang, Y., Han, W., Feng, R., Hu, Y., Guo, J., Gong, H. (2016). Silicon Enhances Water Stress Tolerance by Improving Root Hydraulic Conductance in Solanum lycopersicum L. Frontiers in plant science, 7. doi:10.3389/fpls.2016.00196

UN (United Nations Department of Economic and Social Affairs, Population Division), (2013). World Population Prospects: the 2012 Revision.

Yang, F., Hong, F., You, W., Liu C., Gao, F., Wu, C., Yang, P. (2006). Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110 (2), 179-190. doi:10.1385/BTER:110:2:179

Zheng, L., Hong, F., Lu, S., Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research. 104, 83e91. doi:10.1385/BTER:104:1:083




DOI: http://dx.doi.org/10.14720/aas.2017.109.2.27

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2017

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941