MEDLABORATORIJSKA PRIMERJAVA REZULTATOV GENOTIPIZACIJE FIGE Z MIKROSATELITSKIMI MARKERJI (Ficus carica L.) IN DOLOČITEV REFERENČNIH ALELOV
Povzetek
Mikrosateliti so se izkazali kot zelo uporabni markerji pri genetskih raziskavah rastlin. Zaradi odstopanj dolžin enakih alelov v različnih laboratorijih, je primerjava rezultatov med laboratoriji pogosto težavna. Namen raziskave je bil primerjati rezultate genotipizacije dveh laboratorijev, ovrednotiti genetske parametre mikrosatelitskih markerjev in določiti dolžine referenčnih alelov za sorte fig istrskega polotoka.
Rezultati genotipizacije devetdesetih vzorcev fige (Ficus carica L.) so bili primerljivi med laboratorijema, kljub razlikam, ki smo jih opazili pri primerjavi elektroferogramov različnih sistemov kapilarnih elektroforez. Razlike med dolžinami enakih alelov med laboratorijema so bile odkrite zaradi različnih metod PCR in analitske opreme, vendar pa so bile razlike med aleli istega lokusa ohranjene. Pri lokusu FSYC01 smo ugotovili izpad alela, kar je privedlo do napačne identifikacije; namesto 28 heterozigotov smo posameznike določili kot homozigote. Ugotovljena lastnost nakazuje na nezanesljivost lokusa FSYC01. Izpad alela smo pripisali uporabi ekonomične metode PCR ali uporabi protokola PCR s postopnim nižanjem temperature prileganja začetnih oligonukleotidov.
Genotipi štiriindvajsetih referenčnih sort istrskega polotoka so bili potrjeni v obeh laboratorijih. Rezultati raziskave bodo prispevali k uporabi bolj zanesljivih mikrosatelitskih markerjev, z večjo močjo razlikovanja in posledično k zanesljivi standardizaciji rezultatov z drugimi genetskimi raziskavami fige.Ključne besede
Celotno besedilo:
PDF (English)Literatura
Abdelkrim, A. B., Baraket, G., Essalouh, L., Achtak, H., Khadari, B., & Salhi-Hannachi, A. (2015). Use of morphological traits and microsatellite markers to characterize the Tunisian cultivated and wild figs (Ficus carica L.). Biochemical Systematics and Ecology, 59, 209-219. doi:10.1016/j.bse.2015.01.026
Abou-Ellail, M., Mahfouze, S. A., El-Enany, M. A. M., & Mustafa, N. S. A. (2014). Using biochemical and simple sequence repeats (SSR) markers to characterize (Ficus carica L.) cultivars. World Applied Sciences Journal, 29(3), 313-321. https://doi:10.5829/idosi.wasj.2014.29.03.13835
Achtak, H., Oukabli, A., Ater, M., Santoni, S., Kjellberg, F., & Khadari, B. (2009). Microsatellite markers as reliable tools for fig cultivar identification. Journal of the American Society for Horticultural Science, 134(6), 624-631.
Achtak, H., Ater, M., Oukabli, A., Santoni, S., Kjellberg, F., & Khadari, B. (2010). Traditional agroecosystems as conservatories and incubators of cultivated plant varietal diversity: the case of fig (Ficus carica L.) in Morocco. BMC Plant Biology, 10(1), 28. doi:10.1186/1471-2229-10-28
Ahmed, S., Dawson, D. A., Compton, S. G., & Gilmartin, P. M. (2007). Characterization of microsatellite loci in the African fig Ficus sycomorus L. (Moraceae). Molecular Ecology Notes, 7(6), 1175-1177. doi:10.1111/j.1471-8286.2007.01822.x
Aradhya, M. K., Stover, E., Velasco, D., & Koehmstedt, A. (2010). Genetic structure and differentiation in cultivated fig (Ficus carica L.). Genetica, 138(6), 681-694. doi:10.1007/s10709-010-9442-3
Balas, F. C., Osuna, M. D., Domínguez, G., Pérez-Gragera, F., & López-Corrales, M. (2014). Ex situ conservation of underutilised fruit tree species: establishment of a core collection for Ficus carica L. using microsatellite markers (SSRs). Tree Genetics & Genomes, 10(3), 703-710. doi:10.1007/s11295-014-0715-3
Baldoni, L., Cultrera, N., Mariotti, R., Ricciolini, C., Arcioni, S., Vendramin, G., . . . Testolin, R. (2009). A consensus list of microsatellite markers for olive genotyping. Molecular Breeding, 24(3), 213-231. doi:10.1007/s11032-009-9285-8
Bandelj, D., Jakše, J., & Javornik, B. (2004). Amplification of fluorescent-labelled microsatellite markers in olives by a novel, economic method. Acta agriculturae Slovenica, 83(2), 323-329.
Bandelj, D., Javornik, B., & Jakše, J. (2007). Development of microsatellite markers in the common fig, Ficus carica L. Molecular Ecology Notes, 7(6), 1311-1314. doi:10.1111/j.1471-8286.2007.01866.x
Bandelj, D., Jakše, J., Javornik, B. (2008). Development of molecular markers for identification of fig varieties in Istria. In D. Bandelj, M. Bučar-Miklavčič & I. Vrhovnik (Eds.), The common fig (Ficus carica L.) in Istria: morphological, molecular and some chemical characteristics (pp. 84-89). Koper, SI: Annales.
Benjak, A., Konradi, J., Blaich, R., & Forneck, A. (2006). Different DNA extraction methods can cause different AFLP profiles in grapevine (Vitis vinifera L.). Vitis, 45(1), 15-21.
Butler, J. M. (2014). Advanced Topics in Forensic DNA Typing: Interpretation (1st ed.). San Diego, CA: Academic Press.
Caliskan, O., Polat, A. A., Celikkol, P., & Bakir, M. (2012). Molecular characterization of autochthonous Turkish fig accessions. Spanish Journal of Agricultural Research, 10(1), 130-140. doi:10.5424/sjar/2012101-094-11
Caroli, S., Santoni, S., & Ronfort, J. (2011). AMaCAID: a useful tool for accurate marker choice for accession identification and discrimination. Molecular Ecology Resources, 11(4), 733-738. doi:10.1111/j.1755-0998.2011.02993.x
Chapuis, M. P., & Estoup, A. (2007). Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution, 24(3), 621-631. doi:10.1093/molbev/msl191
Chatti, K., Baraket, G., Abdelkrim, A. B., Saddoud, O., Mars, M., Trifi, M., & Salhi Hannachi, A. (2010). Development of molecular tools for characterization and genetic diversity analysis in Tunisian fig (Ficus carica) cultivars. Biochemical Genetics, 48(9-10), 789-806. doi:10.1007/s10528-010-9360-1
Cipriani, G., Marrazzo, M. T., Marconi, R., Cimato, A., & Testolin, R. (2002). Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. TAG Theoretical and Applied Genetics, 104(2), 223-228. doi:10.1007/s001220100685
Cryer, N., Fenn, M., Turnbull, C., & Wilkinson, M. (2006). Allelic size standards and reference genotypes to unify international cocoa (Theobroma cacao L.) microsatellite data. Genetic Resources and Crop Evolution, 53(8), 1643-1652. doi:10.1007/s10722-005-1286-9
Culley, T. M., Stamper, T. I., Stokes, R. L., Brzyski, J. R., Hardiman, N. A., Klooster, M. R., & Merritt, B. J. (2013). An efficient technique for primer development and application that integrates fluorescent labeling and multiplex PCR. Applications in Plant Sciences, 1(10), 1300027. doi:10.3732/apps.1300027
De Valk, H. A., Meis, J. F. G. M., Bretagne, S., Costa, J. M., Lasker, B. A., Balajee, S. A.,. Klaassen, C. H. W. (2009). Interlaboratory reproducibility of a microsatellite-based typing assay for Aspergillus fumigatus through the use of allelic ladders: proof of concept. Clinical Microbiology and Infection, 15(2), 180-187. doi:10.1111/j.1469-0691.2008.02656.x
Debernardi, A., Suzanne, E., Formant, A., Pène, L., Dufour, A. B., & Lobry, J. R. (2011). One year variability of peak heights, heterozygous balance and inter-locus balance for the DNA positive control of AmpFLSTR Identifiler STR kit. Forensic Science International: Genetics, 5(1), 43-49. doi:10.1016/j.fsigen.2010.01.020
Deemer, D. L., & Nelson, D. C. (2010). Standardized SSR allele naming and binning among projects. BioTechniques, 49, 835-836. doi:10.2144/000113540
Doveri, S., Sabino Gil, F., Díaz, A., Reale, S., Busconi, M., da Câmara Machado, A., . . . Lee, D. (2008). Standardization of a set of microsatellite markers for use in cultivar identification studies in olive (Olea europaea L.). Scientia Horticulturae, 116(4), 367-373. doi:10.1016/j.scienta.2008.02.005
Ellis, J. S., Gilbey, J., Armstrong, A., Balstad, T., Cauwelier, E., Cherbonnel, C., . . . Stevens, J. R. (2011). Microsatellite standardization and evaluation of genotyping error in a large multi-partner research programme for conservation of Atlantic salmon (Salmo salar L.). Genetica, 139(3), 353-367. doi:10.1007/s10709-011-9554-4
Ganopoulos, I., Xanthopoulou, A., Molassiotis, A., Karagiannis, E., Moysiadis, T., Katsaris, P., . . . Madesis, P. (2015). Mediterranean basin Ficus carica L.: from genetic diversity and structure to authentication of a Protected Designation of Origin cultivar using microsatellite markers. Trees, 29(6), 1959-1971. doi:10.1007/s00468-015-1276-2
Giraldo, E., Viruel, M. A., López-Corrales, M., & Hormaza, J. I. (2005). Characterisation and cross-species transferability of microsatellites in the common fig (Ficus carica L.). Journal of Horticultural Science and Biotechnology, 80(2), 217-224. doi:10.1080/14620316.2005.11511920
Giraldo, E., Lopez-Corrales, M., & Hormaza, J. I. (2008). Optimization of the management of an ex-situ germplasm bank in common fig with SSRs. Journal of the American Society for Horticultural Science, 133(1), 69-77.
Haberl, M., & Tautz, D. (1999). Comparative allele sizing can produce inaccurate allele size differences for microsatellites. Molecular Ecology, 8(8), 1347-1349. doi:10.1046/j.1365-294X.1999.00692_1.x
Ikegami, H., Nogata, H., Hirashima, K., Awamura, M., & Nakahara, T. (2009). Analysis of genetic diversity among European and Asian fig varieties (Ficus carica L.) using ISSR, RAPD, and SSR markers. Genetic Resources and Crop Evolution, 56(2), 201-209. doi:10.1007/s10722-008-9355-5
Jones, H., Bernole, A., Jensen, L., Horsnell, R., Law, J., Cooke, R., & Norris, C. (2008). Minimising inter-laboratory variation when constructing a unified molecular database of plant varieties in an allogamous crop. TAG Theoretical and Applied Genetics, 117(8), 1335-1344. doi:10.1007/s00122-008-0867-3
Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5), 1099-1106. doi:10.1111/j.1365-294X.2007.03089.x
Khadari, B., Hochu, I., Santoni, S., & Kjellberg, F. (2001). Identification and characterization of microsatellite loci in the common fig (Ficus carica L.) and representative species of the genus Ficus. Molecular Ecology Notes, 1(3), 191-193. doi:10.1046/j.1471-8278.2001.00072.x
Khadari, B., Oukabli, A., Ater, M., Mamouni, A., Roger, J. P., & Kjellberg, F. (2005). Molecular characterization of Moroccan fig germplasm using intersimple sequence repeat and simple sequence repeat markers to establish a reference collection. HortScience, 40(1), 29-32.
Khadari, B. (2012). Ex situ management of fig (Ficus carica L.) genetic resources: Towards the establishment of the Mediterranean reference collection. Acta Horticulturae, 940, 67-74. doi:10.17660/ActaHortic.2012.940.7
Koumi, P., Green, H. E., Hartley, S., Jordan, D., Lahec, S., Livett, R. J., . . . Ward, D. M. (2004). Evaluation and validation of the ABI 3700, ABI 3100, and the MegaBACE 1000 capillary array electrophoresis instruments for use with short tandem repeat microsatellite typing in a forensic environment. Electrophoresis, 25(14), 2227-2241. doi:10.1002/elps.200305976
Kump, B., & Javornik, B. (1996). Evaluation of genetic variability among common buckwheat (Fagopyrum esculentum Moench) populations by RAPD markers. Plant Science, 114(2), 149-158. doi:10.1016/0168-9452(95)04321-7
Kyung-Ho, M., Nam-Soo, K., Gi-An, L., Sok-Young, L., Ju Kyong, L., Jung Yoon, Y., . . . Soon-Jae, K. (2009). Development of SSR markers for studies of diversity in the genus Fagopyrum. Theoretical and Applied Genetics, 119(7), 1247-1254. doi:10.1007/s00122-009-1129-8
Leclair, B., Fregeau, C., Bowen, K., & Fourney, R. (2004). Systematic analysis of stutter percentages and allele peak height and peak area ratios at heterozygous STR loci for forensic casework and database samples. Journal of Forensic Sciences, 49(5), 968-980. doi:10.1520/JFS2003312
Mandel, J. R., Dechaine, J. M., Marek, L. F., & Burke, J. M. (2011). Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theoretical and Applied Genetics, 123(5), 693-704. doi:10.1007/s00122-011-1619-3
Mullins, F. M., Dietz, L., Lay, M., Zehnder, J. L., Ford, J., Chun, N., & Schrijver, I. (2007). Identification of an intronic single nucleotide polymorphism leading to allele dropout during validation of a CDH1 sequencing assay: implications for designing polymerase chain reaction-based assays. Genetics In Medicine, 9, 752. doi:10.1097/GIM.0b013e318159a369
Nybom, H., Weising, K., & Rotter, B. (2014). DNA fingerprinting in botany: past, present, future. Investigative Genetics, 5(1), 1-35. doi:10.1186/2041-2223-5-1
Pasqualotto, A. C., Denning, D. W., & Anderson, M. J. (2007). A cautionary tale: Lack of consistency in allele sizes between two laboratories for a published multilocus microsatellite typing system. Journal of Clinical Microbiology, 45(2), 522-528. doi:10.1128/JCM.02136-06
Peakall, R., & Smouse, P. E. (2006). GENEALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288-295. doi:10.1111/j.1471-8286.2005.01155.x
Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537-2539. doi:10.1093/bioinformatics/bts460
Pompanon, F., Bonin, A., Bellemain, E., & Taberlet, P. (2005). Genotyping errors: causes, consequences and solutions. Nature Reviews Genetics, 6(11), 847-859. doi:10.1038/nrg1707
Schuelke, M. (2000). An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18(2), 233-234. doi:10.1038/72708
Solomon, A., Golubowicz, S., Yablowicz, Z., Grossman, S., Bergman, M., Gottlieb, H. E., . . . Flaishman, M. A. (2006). Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). Journal of Agricultural and Food Chemistry, 54(20), 7717-7723. doi:10.1021/jf060497h
Soriano, J., Zuriaga, E., Rubio, P., Llácer, G., Infante, R., & Badenes, M. (2011). Development and characterization of microsatellite markers in pomegranate (Punica granatum L.). Molecular Breeding, 27(1), 119-128. doi:10.1007/s11032-010-9511-4
Sutton, J. T., Robertson, B. C., & Jamieson, I. G. (2011). Dye shift: a neglected source of genotyping error in molecular ecology. Molecular Ecology Resources, 11, 514-520. doi:10.1111/j.1755-0998.2011.02981.x
This, P., Jung, A., Boccacci, P., Borrego, J., Botta, R., Costantini, L., . . . Maul, E. (2004). Development of a standard set of microsatellite reference alleles for identification of grape cultivars. TAG Theoretical and Applied Genetics, 109, 1448-1458. doi:10.1007/s00122-004-1760-3
Tvedebrink, T., Eriksen, P. S., Mogensen, H. S., & Morling, N. (2012). Statistical model for degraded DNA samples and adjusted probabilities for allelic drop-out. Forensic Science International: Genetics, 6(1), 97-101. doi:10.1016/j.fsigen.2011.03.001
Vemireddy, L. R., Archak, S., & Nagaraju, J. (2007). Capillary electrophoresis is essential for microsatellite marker based detection and quantification of adulteration of Basmati rice (Oryza sativa). Journal of Agricultural and Food Chemistry, 55(20), 8112-8117. doi:10.1021/jf0714517
Vinson, J. A., Zubik, L., Bose, P., Samman, N., & Proch, J. (2005). Dried fruits: excellent in vitro and in vivo antioxidants. Journal of the American College of Nutrition, 24(1), 44-50. doi:10.1080/07315724.2005.10719442
Wagner, H. W., & Sefc, K. M. (1999). IDENTITY 1.0. Vienna, AT: University of Agricultural Sciences, Centre for Applied Genetics.
Wenz, H. M., Robertson, J. M., Menchen, S., Oaks, F., Demorest, D. M., Scheibler, D., . . . Efcavitch, J. W. (1998). High-precision genotyping by denaturing capillary electrophoresis. Genome Research, 8(1), 69-80. doi:10.1101/gr.8.1.69
Zohary, D., & Spiegel-Roy, P. (1975). Beginnings of fruit growing in the old world. Science, 187(4174), 319-327. doi:10.1126/science.187.4174.319
DOI: http://dx.doi.org/10.14720/aas.2018.111.1.14
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2018
##submission.license.cc.by-nc-nd4.footer##
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941