UČINKI OBRAVNAVE S KADMIJEM NA RAST IN ANTIOKSIDACIJSKI SISTEM JEČMENA PRI OPTIMALNIH IN NIZKIH TEMPERATURAH

Natalia KAZNINA, Julia BATOVA, Natalia REPKINA, Galina LAIDINEN, Alexandr TITOV

Povzetek


Preučevan je bil učinek kadmija (100 μM) na rast ječmena (Hordeum vulgare L., vsebnost HvCu/ZnSOD, HvCAT2 in HvPRX07 transkriptov in na aktivnost antioksidacijskih encimov (SOD, CAT in PRX) v koreninah in listih sejank pri optimalni (22 °C) in nizki temperaturi (4 °C). Izpostavitev kadmiju pri 22 °C ni zavrla rasti rastlin. V teh razmerah so oksidacijski procesi v celicah ostali na ravni kontrole, kar je bilo doseženo s povečanjem ustreznih prepisov genov in aktivnostjo antioksidacijskih encimov v koreninah in listih. Nasprotno je izpostavitev kadmiju pri 4 °C zavrla rast sejank kljub manjši vsebnosti kovine v rastlini. Peroksidacija maščob v koreninah in listih se je značilno povečala. Domnevamo, da je bil ta učinek povezan s kopičenjem presežnih količin vodikovega peroksida zaradi neuravnoteženosti njegovega nastanka in nevtralizacije. To domnevo potrjujejo podatki, da sta se ekspresija HvCu/ZnSOD in celopkupna aktivnost SOD značilno povečali pri izpostavitvi kadmiju pri 4 °C, pri čemer vsebnosti HvCAT2 in HvPRX07 transkriptov in aktivnosti CAT ter PXR niso narasle.

Ključne besede


Hordeum vulgare L.; kadmij; nizke temperature; rast; antioksidacijski encimi; ekspresija genov

Celotno besedilo:

PDF (English)

Literatura


Aebi, H. E. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. doi:10.1016/S0076-6879(84)05016-3

Avasthi, R., Bhandari, K., Nayyar, H. (2015). Temperature stress and redox homeostasis in agricultural crops. Frontiers in Environmental Science, 3, 1-24. doi:10.3389/fenvs.2015.00011

Beauchamp, C., Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical of Biochemistry, 44, 276-287. doi:10.1016/0003-2697(71)90370-8

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical of Biochemistry, 72, 248-254. doi:10.1016/0003-2697(76)90527-3

Foyer, C.H., Noctor, G. (2005). Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment, 29, 1056-1071. doi:10.1111/j.1365-3040.2005.01327.x

Foyer C. H., Noctor, G. (2015). Defining robust redox signalling within the context of the plant cell. Plant, Cell and Environment, 38, 239-239. doi:10.1111/pce.12487

Gechev, T., Willekens, H., Van Montagu, M., Inze, D., Van Camp, W., Toneva, V., Minkov, I. (2003) Different responses of tobacco antioxidant enzymes to light and chilling stress. Journal of Plant Physiology, 160, 509-515. doi:10.1078/0176-1617-00753

Gill, S. S, Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48, 909-930. doi:10.1016/j.plaphy.2010.08.016

Heath, R. L., Packer, L. (1968). Photoperoxidation in isolated cloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198. doi:10.1016/0003-9861(68)90654-1

Janda, T., Szalai, G., Rios-Gonzaier, K., Veisz, O., Páldi, E. (2003). Comparative study of frost tolerance and antioxidant activity in cereals. Plant Science, 164, 301-306. doi:10.1016/S0168-9452(02)00414-4

Khan, M. A., Samiullah, S., Singh, S., Nazar, R. (2007). Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. Journal of Agronomy and Crop Science, 193, 435-444. doi:10.1111/j.1439-037X.2007.00272.x

Lee, K., Bae, D.W., Kim, S. H., Han, H. J., Liu, X., Park, N. C., Lim, C. O., Lee, C. Y., Chung, W. S. (2010). Comparative proteomic analyses of the short-term responses of rice roots and leaves to cadmium. Journal of Plant Physiology, 167, 161-168. doi:10.1016/j.jplph.2009.09.006

Livak, K. J., Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 –ΔΔCt method. Methods, 25, 402-408. doi:10.1006/meth.2001.1262

Lukačová, Z., Švubová, R., Kohanová, J., Lux, A. (2013). Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regulation, 70, 89-103. doi:10.1007/s10725-012-9781-4

Luo, H., Li, H., Zhang, X., Fu, J. (2011). Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress. Ecotoxicology, 20, 770-778. doi:10.1007/s10646-011-0628-y

Maehly, A. C., Chance, B. (1954). The assay of catalase and peroxidase. Methods of Biochemical Analysis, 1, 357-424.

Sandalio, L. M., Dalurzo, H. C., Gómez, M., Romero-Puertas, M. C., Del Rio, L. A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52, 2115-2126. doi:10.1093/jexbot/52.364.2115

Schützendübel, A., Polle, A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany. 53, 1351-1365. doi:10.1093/jexbot/53.372.1351

Sergeant, K., Kieffer, P., Dommes, J., Hausman, J.-F., Renaut, J. (2014). Proteomic changes in leaves of poplar exposed to both cadmium and low-temperature. Environmental and Experimental Botany, 106, 112-123. doi:10.1016/j.envexpbot.2014.01.007

Sin’kevich, M. S., Naraikina, N. V., Trunova, T. I. (2011). Processes hindering activation of lipid peroxidation in cold-tolerant plants under hypothermia. Russian Journal of Plant Physiology, 58, 1020-1026. doi:10.1134/S1021443711050232

Smeets, K., Opdenakker, K., Remans, T., Van Sanden, S., Van Belleghem, F., Semane, B. (2009). Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to Cd or Cu in a multipollution context. Journal of Plant Physiology, 166, 1982-1992. doi:10.1016/j.jplph.2009.06.014

Smeets, K., Ruytinx, J., Semane, B., Van Belleghem, F., Remans, T., Van Sanden, S., Vanginsveld. J., Cuypers, A. (2008). Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environmental and Experimental Botany, 63, 1-8. doi:10.1016/j.envexpbot.2007.10.028

Venzhik, Yu. V., Talanova, V. V., Titov, A. F., Kholoptseva, E. S. (2015). Similarities and differences in wheat plant responses to low temperature and cadmium. Biology Bulletin, 42, 508-514. doi:10.1134/S1062359015060126

Wu, F., Zhang, G., Dominy, P. (2003). Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental Botany, 50, 67-78. doi:10.1016/S0098-8472(02)00113-2




DOI: http://dx.doi.org/10.14720/aas.2018.111.1.16

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2018

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941