Učinek uporabe Se na fotosintezo, vsebnost osmotikov in vodni režim pri dveh genotipih trde pšenice (Triticum durum L.) v razmerah sušnega stresa

Roghieh HAJIBOLAND, Noushin SADEGHZADEH, Behzad SADEGHZADEH

Povzetek


Preučevani so bili učinki Se, dodanega kot Na2SeO4 v koncentraciji 10 µg l-1 na dveh genotipih trde pšenice (Triticum durum L.) gojene v perlitu v razmerah sušnega stresa. Tretiranje s Se je neznatno povečalo biomaso obeh genotipov v razmerah sušnega stresa, a ne pri kontroli. Fotosinteza je upadla s sušo, a se je po tretiranju s Se pri obeh genotipih povečala za 2.3 krat. Transpiracijska izguba vode je bila pospešena pri rastlinah tretiranih s Se v razmerah sušnega stresa kot pri dobro zalitih rastlinah. Uporaba Se se je odrazila v večji koncentraciji topnih beljakovin in prostih α-amino kislin v razmerah suše, vendar ne v koncentraciji prolina. Naši rezultati kažejo, da uporaba Se izboljša nekatere fiziološke parameter kot so fotosinteza, akumulacija osmotikov in učinkovitost izrabe vode, vendar ne spremeni značilno biomase rastlin in parametrov vodnega režima rastline.

Ključne besede


triticum durum; trda pšenica; organski osmotiki; fotosinteza; prolin; učinkovitost izrabe vode; vodni režim

Celotno besedilo:

PDF (English)

Literatura


Bates, L.S., Waldren, R.P., Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205–207. DOI: 10.1007/BF00018060

Chalker-Scott, L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70: 1–9. DOI: 10.1111/j.1751- 1097.1999.tb01944.x

Chaves, M.M., Flexas, J. , Pinheiro, C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103: 551–560. DOI: 10.1093/aob/mcn125

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29: 185–212. DOI: 10.1051/agro:2008021

Feng, R., Wei, C., Tu, S. 2013. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 87: 58–68. DOI: 10.1016/j.envexpbot.2012.09.002

Fini, A., Brunetti, C., Di Ferdinando, M., Ferrini, F., Tattini, M. 2011. Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal. Behav. 6: 709–711. DOI: 10.4161/psb.6.5.15069

Germ, M., Stibilj, V. 2007. Selenium and plants. Acta Agric. Slov. 89: 65–71. DOI: 10.2478/v10014-007- 0008-8

Giusti, M.M., Wrolstad, R. E. 2001. Characterization and measurement of anthocyanins by UV–Visible spectroscopy. In: Current Protocols in Food Analytical Chemistry. Wrolstad, R.E., Acree, T.E., An, H., Decker, E.A., Pennere, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Sporns, P. (eds.), John Wiley, New York: F1.2.1–F1.2.13.

Grayer, R.J. 1989. Flavonoids. In: Methods in Plant Biochemistry. Vol. 1. Plant Phenolics. Dey, P.M., Harborne, J.B. (eds.). Academic press: 283–323.

Habibi, G. 2013. Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agric. Slov. 101: 31–39. DOI: 10.2478/acas-2013-0004

Hajiboland, R. 2012. Effect of micronutrient deficiencies on plant stre ss responses. In: Abiotic Stress Responses in Plants. Ahmad, P., Prasad, M.N.V. (eds.), Springer: 283–329. DOI: 10.1007/978-1-4614-0634-1_16

Hajiboland, R. 2014. Reactive oxygen species and photosynthesis. In: Oxidative Damage to Plants, Antioxidant Networks and Signaling. Ahmad, P. (ed.) Academic Press: 1–63. DOI: 10.1016/B978-0- 12-799963-0.00001-0

Hajiboland, R., Amjad L. 2007. Does antioxidant capacity of leaves play a ro le in growth response to selenium at different sulf ur nutritional status? Plant Soil Environ. 53: 207–215.

Hajiboland, R., Keivanfar, N. 2012. Selenium supplementation stimulates vegetative and reproductive growth in canola ( Brassica napus L.) plants. Acta Agric. Slov. 99: 13–19. DOI: 10.2478/v10014-012-0002-7

Hajiboland, R., Sadeghzadeh, N. 2014. Effect of selenium supplementation on CO 2 and NO 3 − assimilation under low and adequate N supply in wheat (Triticum aestivum L.) plants. Photosynthetica In press . DOI: 10.1007/s11099- 014-0058-1

Hajiboland, R., Yang, X.E., Römheld, V. 2003, Effects of bicarbonate and high pH on growth of Zn- efficient and Zn-inefficient genotypes of rice, wheat and rye. Plant Soil 250: 349–357. DOI: 10.1023/A:1022862125282

Hartikainen, H., Xue, T.L., Piironen, V. 2000. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225: 193–200. DOI: 10.1023/A:1026512921026

Hasanuzzaman, M., Fujita, M. 2011. Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol. Trace Elem. Res. 143: 1758–1776. DOI: 10.1007/s12011-011-8998-9

Hernández, I., Alegre, L., Van Breusegem, F., Munné- Bosch, S. 2009. How relevant are flavonoids as antioxidants in plants? Trends Plant Sci. 14: 125– 132. DOI: 10.1016/j.tplants.2008.12.003

Kuznetsov, V.V., Kholodova, V.P., Kuznetsov, V.V., Yagodin B.A. 2003. Selenium regulates the water status of plants exposed to drought. Dokl. Biol. Sci. 390: 266–268. DOI: 10.1023/A:1024426104894

Lee, B.R., Jin, Y.L., Jung W.J., Avice J.C., Morvan- Bertrande, A., Ourrye, A., Park, C.W., Kim, T.H. 2008. Water-deficit accumulates sugars by starch degradation-not by de novo synthesis—in white clover leaves (Trifolium repens). Physiol. Plant. 134: 403–411. DOI: 10.1111/j.1399- 3054.2008.01156.x

Lichtenthaler, H.K., Wellburn, A.R. 1983. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biol. Soc. Trans. 11: 591–592.

Lutts, S., Majerus, V., Kinet, J.M. 1999. NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol. Plant. 105: 450–458. DOI: 10.1034/j.1399- 3054.1999.105309.x

Mohammadi, R., Haghparast, R., Sadeghzadeh, B., Ahmadi, H., Solimani, K., Amri, A. 2014. Adaptation patterns and yield stability of durum wheat landraces to highland cold rainfed areas of Iran. Crop Sci. 54: 944–954. DOI: 10.2135/cropsci2013.05.0343

Morgan, J.M. 1984. Osmoregulation and water stress in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 35: 299–319. DOI: 10.1146/annurev.pp.35.060184.001503

Niedzwiedz-Siegien, I., Bogatek-Leszczynska, R., Come, D., Corbineau, F. 2004. Effects of drying rate on dehydration sensitivity of excised wheat seedling shoots as related to sucrose metabolism and antioxidant enzyme activities. Plant Sci. 167: 879–888. DOI: 10.1016/j.plantsci.2004.05.042

Nsarellah, N., Lhaloui, S. , Nachit, M. 2000. Breeding durum wheat for biotic stresses in the Mediterranean region. In: Durum Wheat Improvement in the Mediterranean Region: New Challenges. Royo, C., Nachit, M.M., Di, Fonzo, N., Araus, J.L. (eds.). CIHEAM, Zaragoza: 341–347.

Verbruggen, N., C. Hermans, C. 2008. Proline accumulation in plants: a review. Amino Acids 35: 753–759. DOI: 10.1007/s00726-008-0061-6

Yao, X.Q., Chu, J.Z., Wang, G.Y. 2009. Effects of drought stress and selenium supply on growth and physiological characteristics of wheat seedlings. Acta Physiol. Plant. 31: 1031–1036. DOI: 10.1007/s11738-009-0322-3

Yemm, E.W., Cocking, E.C. 1955. The determination of amino acids with ninhydrin. Analyst 80: 209–213. DOI: 10.1039/an9558000209

Yemm, E.W., Willism A.J. 1954. The estimation of carbohydrates extracts by anthrone. Biochem. J. 57: 508–514.

Yordanov, V. Velikova, T. Tsonev V. 2003. Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol. Special Issue, 187–206.




DOI: http://dx.doi.org/10.14720/aas.2014.103.2.2

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2014 Acta agriculturae Slovenica

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941