On-farm seed priming interventions in agronomic crops

Neha CHATTERJEE, Deepranjan SARKAR, Ardit SANKAR, Sumita PAL, H. B. SINGH, Rajesh Kumar SINGH, J. S. BOHRA, Amitava RAKSHIT

Abstract


Priming techniques are gaining importance in agriculture with the increase in environmental stresses. Resource-poor farmers are in urgent need of such techniques as they are simple, economical, and value-added intervention associated with low-risk bearing factors. Seed enhancement methods are key to improve seed performance and achieve a good stand establishment. Worldwide beneficial effects of priming are recorded. But these technologies have still not reached most farmers. This review highlights the importance of on-farm priming strategies in modern crop production system to yield better productivity and obtain higher economic returns. Stimulation of the pre-germination metabolic changes by priming is necessary to overcome the environmental challenges that a plant can encounter. Thus, the study also focuses on mechanisms associated with priming-induced stress tolerance of crops. Various safe practical methods of seed priming can be easily adopted by the farming community to alleviate the levels of different stresses which can hamper productivity. Simultaneously they can produce good quality seeds and use them further for the next crop cycle cutting the costs of seed purchase.


Keywords


priming methods; priming agents; stress; stress tolerance; plant growth

Full Text:

PDF

References


Abd El-Wahab, A.M., & Mohamed, A. (2008). Effect of some trace elements on growth, yield and chemical constituents of Trachyspermum ammi L. plants under Sinai conditions. Research Journal of Agriculture and Biological Sciences, 4, 717–724.

Afzal, I., Basra, S. M. A., Hameed, A., & Farooq, M. (2006). Physiological enhancements for alleviation of salt stress in wheat. Pakistan Journal of Botany, 38(5), 1649–1659.

Ahammad, K. U., Rahman, M. M., & Ali, M. R. (2014). Effect of hydropriming method on maize (Zea mays) seedling emergence. Bangladesh Journal of Agricultural Research, 39(1), 143–150. doi:10.3329/bjar.v39i1.20164

Ajouri, A., Asgedom, H., & Becker, M. (2004). Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. Journal of Plant Nutrition and Soil Science, 167, 630–636. doi:10.1002/jpln.200420425

Akbari, G., Sanavy, S. A. M. M., & Yousefzadeh, S. (2007). Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pakistan Journal of Biological Sciences, 10(15), 2557–2561. doi:10.3923/pjbs.2007.2557.2561

Al-Mudaris, M. A., & Jutzi, S. C. (1999). The influence of fertilizer based seed priming treatment on emergence and seedling growth of Sorghum bicolor and Pennisetum glaucum in pot trials under greenhouse conditions. Journal of Agronomy & Crop Science, 182, 135–141. doi:10.1046/j.1439-037x.1999.00293.x

Amooaghaie, R. (2011). The effect of hydro and osmopriming on alfalfa seed germination and antioxidant defenses under salt stress. African Journal of Biotechnology, 10(33), 6269–6275.

Amule, F. C., Rawat, A. K., & Rao, D. L. N. (2017). Mono and co-inoculation response of Rhizobium and PGPR on soybean in central India. International Journal of Plant & Soil Science, 20(6), 1–13. doi:10.9734/IJPSS/2017/36997

Angrish, R., Kumar, B., & Datta, K. S. (2001). Effect of gibberellic acid and kinetin on nitrogen content and nitrate reductase activity in wheat under saline condition. Indian Journal of Plant Physiology, 6, 172–177.

Anjum, S. A., Xie, X. -Y., Wang, L. -C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026–2032.

Araus, J. L., Slafer, G. A., Reynolds, M. P., & Royo, C. (2002). Plant breeding and drought in C3 cereals: what should we breed for? Annals of Botany, 89(7), 925–940. doi:10.1093/aob/mcf049

Arif, M., Ali, S., Shah, A., Javed, N., & Rashid, A. (2005). Seed priming maize for improving emergence and seedling growth. Sarhad Journal of Agriculture, 21, 239–243.

Arif, M., Waqas, M., Nawab, K., & Shahid, M. (2007). Effect of seed priming in Zn solutions on chickpea and wheat. African Crop Science Conference Proceedings, 8, 237–240.

Ashraf, M., & Foolad, M. R. (2005). Pre‐sowing seed treatment—a shotgun approach to improve germination, plant growth, and crop yield under saline and non‐saline conditions. Advances in Agronomy, 88, 223–271. doi:10.1016/S0065-2113(05)88006-X

Athar, H. R., & Ashraf, M. (2009). Strategies for crop improvement against salinity and drought stress: an overview. In M. Ashraf, M. Ozturk, & H. R. Athar (Eds.), Salinity and water stress (pp. 1–16). Springer, Netherlands. doi:10.1007/978-1-4020-9065-3_1

Avelar, S. A. G., de Sousa, F. V., Fiss, G., Baudet, L., & Peske, S. T. (2012). The use of film coating on the performance of treated corn seed. Revista Brasileira de Sementes, 34(2), 186–192. doi:10.1590/S0101-31222012000200001

Baligar, V. C., Fageria, N. K., & He, Z. L. (2001). Nutrient use efficiency in plants. Communications in Soil Science and Plant Analysis, 32(7-8), 921–950. doi:10.1081/CSS-100104098

Barba-Espín, G., Hernández, J.A., Diaz-Vivancos, P. (2012). Role of H2O2 in pea seed germination. Plant Signaling and Behavior, 7, 193–195. doi:10.4161/psb.18881

Bakhtavar, M. A., Afzal, I., Basra, S. M. A., Ahmad, A-u-H, & Noor, M. A. (2015). Physiological strategies to improve the performance of spring maize (Zea mays L.) planted under early and optimum sowing conditions. PLoS ONE, 10(4), e0124441. doi:10.1371/journal.pone.0124441

Bewley, J. D. (1997). Seed germination and dormancy. The Plant Cell, 9, 1055–1066. doi:10.1105/tpc.9.7.1055

Binang, W. B., Shiyam, J. O., & Ntia, J. D. (2012). Effect of seed priming method on agronomic performance and cost effectiveness of rainfed, dry-seeded NERICA rice. Research Journal of Seed Science, 5(4), 136–143. doi:10.3923/rjss.2012.136.143

Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168, 521–530. doi:10.1002/jpln.200420485

O’Callaghan, M. (2016). Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology, 100, 5729–5746. doi:10.1007/s00253-016-7590-9

Chandler, P. M., & Robertson, M. (1994). Gene expression regulation by abscisic acid and its relation to stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 45, 113–141. doi:10.1146/annurev.pp.45.060194.000553

Chandra Nayaka, S., Niranjana, S. R., Uday Shankar, A. C., Niranjan Raj, S., Reddy, M. S., Prakash, H. S., & Mortensen, C. N. (2010). Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize. Archives of Phytopathology and Plant Protection, 43(3), 264–282. doi:10.1080/03235400701803879

Copeland, L. O., & McDonald, M. B. (1995). Principles of seed science and technology. 3rd Edn. USA, Chapmann and Hall.

Dai, L. Y., Zhu, H. D., Yin, K. D., Du, J. D., & Zhang, Y. X. (2017). Seed priming mitigates the effects of saline-alkali stress in soybean seedlings. Chilean Journal of Agricultural Research, 77(2), 118–125.

Deering, R. H., & Young, T. P. (2006). Germination speeds of exotic annual and native perennial grasses in California and the potential benefits of seed priming for grassland restoration. Grasslands, 16, 14–15.

Dhawal, S., Sarkar, D. R., Yadav, R. S., Parihar, M., & Rakshit, A. (2016). Bio-priming with Arbuscular mycorrhizae for addressing soil fertility with special reference to phosphorus. International Journal of Bioresource Science, 3(2), 35–40. doi:10.5958/2454-9541.2016.00013.X

Di Girolamo, G., & Barbanti, L. (2012). Treatment conditions and biochemical processes influencing seed priming effectiveness. Italian Journal of Agronomy, 7, e25. doi:10.4081/ija.2012.e25

Diniz, K. A., Silva, P. A., Oliveira, J. A., & Evangelista, J. R. E. (2009). Sweet pepper seed responses to inoculation with microorganisms and coating with micronutrients, amino acids and plant growth regulators. Scientia Agricola, 66, 293–297. doi:10.1590/S0103-90162009000300002

Draganić, I., & Lekić, S. (2012). Seed priming with antioxidants improves sunflower seed germination and seedling growth under unfavorable germination conditions. Turkish Journal of Agriculture and Forestry, 36, 421–428.

Eivazi, A. (2012). Induction of drought tolerance with seed priming in wheat cultivars (Triticum aestivum L.). Acta agriculturae Slovenica, 99(1), 21–29. doi:10.2478/v10014-012-0003-6

Faijunnahar, M., Baque, A., Habib, M. A., & Hossain, H. M. M. T. (2017). Polyethylene glycol (peg) induced changes in germination, seedling growth and water relation behavior of wheat (Triticum aestivum L.) Genotypes. Universal Journal of Plant Science, 5(4), 49–57.

Farooq, M., Basra, S. M. A., Afzal, I., & Khaliq, A. (2006). Optimization of hydropriming techniques for rice seed invigoration. Seed Science and Technology, 34, 507–512. doi:10.15258/sst.2006.34.2.25

Farooq, M., Irfan, M., Aziz, T., Ahmad, I., & Cheema, S. A. (2013). Seed priming with ascorbic acid improves drought resistance of wheat. Journal of Agronomy and Crop Science, 199, 12–22. doi:10.1111/j.1439-037X.2012.00521.x

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185–212. doi:10.1051/agro:2008021

Farooq, M., Hussain, M., Wahid, A., & Siddique, K. H. M. (2012). Drought stress in plants: an overview. In R. Aroca (Ed.), Plant responses to drought stress: from morphological to molecular features (pp. 1–33). Springer-Verlag, Berlin, Heidelberg. doi:10.1007/978-3-642-32653-0_1

Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., & Shinozak, K. (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9, 436–442. doi:10.1016/j.pbi.2006.05.014

Ghassemi-Golezani, K., Chadordooz-Jeddi, A., Nasrollahzadeh, S., & Moghaddam, M. (2010). Effects of hydro-priming duration on seedling vigour and grain yield of pinto bean (Phaseolus vulgaris L.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 109–113.

Ghassemi-Golezani, K., & Hosseinzadeh-Mahootchi, A. (2013). Influence of hydro-priming on reserve utilization of differentially aged chickpea seeds. Seed Technology, 35(1), 117–124.

Gimenez, E., Salinas, M., & Manzano-Agugliaro, F. (2018). Worldwide research on plant defense against biotic stresses as improvement for sustainable agriculture. Sustainability, 10, 391. doi:10.3390/su10020391

Goswami, A., Banerjee, R., & Raha, S. (2013). Drought resistance in rice seedlings conferred by seed priming. Protoplasma, 250, 1115–1129. doi:10.1007/s00709-013-0487-x

Harb, E. Z. (1992). Effect of soaking seeds in some growth regulators and micronutrients on growth, some chemical constituents and yield of faba bean and cotton plants. Bulletin of Faculty of Agriculture University of Cairo, 43, 429–452.

Harris, D. (1996). The effects of manure, genotype, seed priming, depth and date of sowing on the emergence and early growth of Sorghum bicolor (L.) Moench in semi-arid Botswana. Soil & Tillage Research, 40, 73–88.

Harris, D., Joshi, A., Khan, P. A., Khan, P. A., Gothkar, P., & Sodhi, P. S. (1999). On-farm seed priming in semi-arid agriculture: development and evaluation in maize, rice and chickpea in India using participatory methods. Experimental Agriculture, 35, 15–29. doi:10.1017/S0014479799001027

Harris, D., Pathan, A. K., Gothkar, P., Joshi, A., Chivasa, W., & Nyamudeza, P. (2001). On-farm seed priming: using participatory methods to revive and refine a key technology. Agricultural Systems, 69, 151–164. doi:10.1016/S0308-521X(01)00023-3

Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38–46. doi:10.1016/j.jplph.2015.12.011

Jisha, K. C., & Puthur, J. T. (2014). Seed halopriming outdo hydropriming in enhancing seedling vigour and osmotic stress tolerance potential of rice varieties. Journal of Crop Science and Biotechnology, 17(4), 209–219. doi:10.1007/s12892-014-0077-2

Jisha, K. C., & Puthur, J. T. (2016). Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. Protoplasma, 253, 277–289. doi:10.1007/s00709-015-0804-7

Jisha, K. C., Vijayakumari, K., & Puthur, J. T. (2013). Seed priming for abiotic stress tolerance: an overview. Acta Physiologiae Plantarum, 35, 1381–1396. doi:10.1007/s11738-012-1186-5

Johnson, S. E., Lauren, J. G., Welch, R. M., & Duxbury, J. M. (2005). A comparison of the effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens culinaris), rice (Oryza sativa) and wheat (Triticum aestivum) in Nepal. Experimental Agriculture, 41, 427–448. doi:10.1017/S0014479705002851

Kaur, S., Gupta, A. K., & Kaur, N. (2002). Effect of osmo- and hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regulation, 37, 17–22. doi:10.1023/A:1020310008830

Kaur, S., Gupta, A. K., & Kaur, N. (2005). Seed priming increases crop yield possibly by modulating enzymes of sucrose metabolism in chickpea. Journal of Agronomy & Crop Science, 191, 81–87. doi:10.1111/j.1439-037X.2004.00140.x

Kaya, M. D., Okcu, G., Atak, M., Cikili, Y., & Kolsaric, O. (2006). Seed treatments to overcome salt and drought stress during germination in sunfower (Helianthus annuus L.). European Journal of Agronomy, 24, 291–295. doi:10.1016/j.eja.2005.08.001

Khan, M. B., Hussain, M., Raza, A., Farooq, S., & Jabran, K. (2015). Seed priming with CaCl2 and ridge planting for improved drought resistance in maize. Turkish Journal of Agriculture and Forestry, 39(2), 193–203. doi:10.3906/tar-1405-39

Khomari, S., Golshan-Doust, S., Seyed-Sharifi, R., & Davari, M. (2018). Improvement of soybean seedling growth under salinity stress by biopriming of high-vigour seeds with salt-tolerant isolate of Trichoderma harzianum. New Zealand Journal of Crop and Horticultural Science, 46(2), 117–132. doi:10.1080/01140671.2017.1352520

Khoshgoftarmanesh, A. H., Schulin, R., Chaney, R. L., Daneshbakhsh, B., & Afyuni, M. (2010). Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agronomy for Sustainable Development, 30(1), 83–107. doi:10.1051/agro/2009017

Krebs, H. A. (1967).The redox state of nicotinamide adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Advances in Enzyme Regulation, 5, 409–434. doi:10.1016/0065-2571(67)90029-5

Kubik, K. K., Eastin, J. A., & Eskridge, K. M. (1988). Solid matrix priming of tomato and pepper. In Proceedings of the international conference on stand establishment for horticultural crops (pp. 86–96). Lancaster, Pennsylvania, USA.

Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6, 26. doi:10.3389/fchem.2018.00026

Langeroodi, A. R. S., & Noora, R. (2017). Seed priming improves the germination and field performance of soybean under drought stress. The Journal of Animal and Plant Sciences, 27(5), 1611–1621.

Lee, S. S., Kim, J. H., Hong, S. B., Yuu, S. H., & Park, E. H. (1998). Priming effect of rice seeds on seedling establishment under adverse soil conditions. Korean Journal of Crop Science, 43, 194–198.

Lorenzo, M. C. B. (1991). Seed invigoration of soybean and corn through solid matrix priming. BS, Philippines.

Lutts, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., Quinet, M., & Garnczarska, M. (2016). Seed priming: new comprehensive approaches for an old empirical technique. In S. Araújo & A. Balestrazzi (Eds.), New challenges in seed biology – basic and translational research driving seed technology (pp. 1–46). InTechOpen. doi:10.5772/64420

Mahmood, A., Turgay, O. C., Farooq, M., & Hayat, R. (2016). Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiology Ecology, 92(8). doi:10.1093/femsec/fiw112

Mahmoodi, T. M., Ghassemi-Golezani, K., Habibi, D., Paknezhad, F., & Ardekani, M. R. (2011). Effect of hydro-priming duration on seedling vigour and field establishment of maize (Zea mays L.). Research on Crops, 12(2), 341–345.

Mandal, A. B., Mondal, R., & Dutta, P. M. S. (2015). Seed enhancement through priming, coating and pelleting for uniform crop stand and increased productivity. Journal of the Andaman Science Association, 20(1), 26–33.

Manjunatha, G., Raj, S. N., Shetty, N. P., & Shetty, H. S. (2008). Nitric oxide donor seed priming enhances defense responses and induces resistance against pearl millet downy mildew disease. Pesticide Biochemistry and Physiology, 91, 1–11. doi:10.1016/j.pestbp.2007.11.012

Mariani, L., & Ferrante, A. (2017). Agronomic management for enhancing plant tolerance to abiotic stresses—drought, salinity, hypoxia, and lodging. Horticulturae, 3, 52. doi:10.3390/horticulturae3040052

Matsushima, K. -I., & Sakagami, J. -I. (2013). Effects of seed hydropriming on germination and seedling vigor during emergence of rice under different soil moisture conditions. American Journal of Plant Sciences, 4, 1584–1593. doi:10.4236/ajps.2013.48191

McDonald, M. B. (2000). Seed priming. In M. Black & J. D. Bewley (Eds.), Seed technology and its biological basis (pp. 287–325). Sheffield Academic Press, Sheffield.

Meena, S. K., Rakshit, A., & Meena, V. S. (2016). Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatalysis and Agricultural Biotechnology, 6, 68–75. doi:10.1016/j.bcab.2016.02.010

Meena, S. K., Rakshit, A., Singh, H. B., & Meena, V. S. (2017). Effect of nitrogen levels and seed bio-priming on root infection, growth and yield attributes of wheat in varied soil type. Biocatalysis and Agricultural Biotechnology, 12, 172–178. doi:10.1016/j.bcab.2017.10.006

Mei, J., Wang, W., Peng, S., & Nie, L. (2017). Seed pelleting with calcium peroxide improves crop establishment of direct-seeded rice under waterlogging conditions. Scientific Reports, 7, 4878. doi:10.1038/s41598-017-04966-1

Mercado, M. F. O., & Fernandez, P. G. (2002). Solid matrix priming of soybean seeds. Philippines Journal of Crop Science, 27, 27–35.

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 9, 405–410. doi:10.1016/S1360-1385(02)02312-9

Moghanibashi, M., Karimmojeni, H., & Nikneshan, P. (2013). Seed treatment to overcome drought and salt stress during germination of sunflower (Helianthus annuus L.). Journal of Agrobiology, 30, 89–96.

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. doi:10.1146/annurev.arplant.59.032607.092911

Nasri, N., Saïdi, I., Kaddour, R., & Lachaâl, M. (2015). Effect of salinity on germination, seedling growth and acid phosphatase activity in lettuce. American Journal of Plant Sciences, 6, 57–63. doi:10.4236/ajps.2015.61007

Nawaz, J., Hussain, M., Jabbar, A., Nadeem, G. A., Sajid, M., Subtain, M. U., & Shabbir, I. (2013). Seed priming a technique. International Journal of Agriculture and Crop Sciences, 6(20), 1373–1381.

Naz, F., Gul, H., Hamayun, M., Sayyed, A., Khan, H., & Sherwani, S. (2014). Effect of NaCl stress on Pisum sativum germination and seedling growth with the influence of seed priming with potassium (KCL and KOH). American-Eurasian Journal of Agricultural and Environmental Sciences, 14(11), 1304–1311.

Negrão, S., Schmöckel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1–11. doi:10.1093/aob/mcw191

Nejad, H. A., & Farahmand, S. (2012). Evaluating the potential of seed priming techniques in improving germination and early seedling growth of Aeluropus macrostachys under salinity stress condition. Annals of Biological Research, 3(11), 5099–5105.

Nikju, M. B., Mobasser, H. R., & Ganjali, H. R. (2015). Influence of variety on biological yield, harvest index, percent of protein in Zea mays. Biological Forum – An International Journal, 7(1), 662–667.

Pandey, P., Irulappan, V., Bagavathiannan, M. V., & Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8, 537. doi:10.3389/fpls.2017.00537

Paparella, S., Araújo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Reports, 34, 1281–1293. doi:10.1007/s00299-015-1784-y

Parera, C. A., & Cantliffe, D. J. (1994). Presowing seed priming. Horticultural Reviews, 16, 109–141. doi:10.1002/9780470650561.ch4

Patade, V. Y., Bhargava, S., & Suprasanna, P. (2009). Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agriculture, Ecosystems and Environment, 134, 24–28. doi:10.1016/j.agee.2009.07.003

Patade, V. Y., Bhargava, S., & Suprasanna, P. (2011). Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: growth, osmolytes accumulation, and antioxidant defense. Journal of Plant Interactions, 6(4), 275–282. doi:10.1080/17429145.2011.557513

Patra, S. S., Mehera, B., Rout, S., Tomar, S. S., Singh, M., & Kumar, R. (2016). Effect of hydropriming and different sowing dates on growth and yield attributes of Wheat (Triticum aestivum L.). Journal of Applied and Natural Science, 8(2), 971–980.

Pedrini, S., Merritt, D. J., Stevens, J., & Dixon, K. (2017). Seed coating: science or marketing spin? Trends in Plant Science, 22(2), 106–116. doi:10.1016/j.tplants.2016.11.002

Radi, A. F., Shaddad, M. A. K., El-Enany, A. E., & Omran, F. M. (2001). Interactive effects of plant hormones (GA3 or ABA) and salinity on growth and some metabolites of wheat seedlings. In W. J. Horst, M. K. Schenk, A. Urkert , N. Claassen, H. Flessa, W. B. Frommer, H. Goldbach, H. W. Olfs, & V. Romheld (Eds.), Plant nutrition, food security and sustainability of agro-ecosystems through basic and applied research. 14th international plant nutrition colloquium (pp. 436–437). Hannover, Germany. doi:10.1007/0-306-47624-X_211

Rahman, M. U., Gul, S., & Ahmad, I. (2004). Effects of water stress on growth and photosynthetic pigments of corn (Zea mays L.) cultivars. International Journal of Agriculture & Biology, 6(4), 652–655.

Rahman, M., Ali, J., & Masood, M. (2015). Seed priming and Trichoderma application: a method for improving seedling establishment and yield of dry direct seeded boro (winter) rice in Bangladesh. Universal Journal of Agricultural Research, 3(2), 59–67.

Ramamurthy, V., Gajbhiye, K. S., Venugopalan, M. V., & Parhad, V. N. (2005). On-farm evaluation of seed priming technology in sorghum (Sorghum bicolor L.). Agricultura Tropica et Subtropica, 38(1), 34–41.

Rakshit, A., Pal, S., Rai, S., Rai, A., Bhowmick, M. K., & Singh, H. B. (2013). Micronutrient seed priming: a potential tool in integrated nutrient management. Satsa Mukkhapatra- Annual Technical Issue, 17, 77–89.

Rakshit, A., Sunita, K., Pal, S., Singh, A. & Singh, H. B. (2015). Bio-priming mediated nutrient use efficiency of crop species. In A. Rakshit, H. B. Singh, & A. Sen (Eds.), Nutrient use efficiency: from basics to advances (pp. 181–191). Springer, India. doi:10.1007/978-81-322-2169-2_12

Rashid, A., Harris, D., Hollington, P. A., & Khattak, R. A. (2002). On-farm seed priming: a key technology for improving the livelihoods of resource-poor farmers on saline lands. In R. Ahmad & K. A. Malik (Eds.), Prospects for saline agriculture (pp. 423–431). Springer, Dordrecht. doi:10.1007/978-94-017-0067-2_44

Rashid, A., Hollington, P. A., Harris, D., & Khan, P. (2006). On-farm seed priming for barley on normal, saline and saline–sodic soils in North West Frontier Province, Pakistan. European Journal of Agronomy, 24, 276–281. doi:10.1016/j.eja.2005.10.006

Rawat, L., Singh, Y., Shukla, N., & Kumar, J. (2012). Seed biopriming with salinity tolerant isolates of Trichoderma harzianum alleviates salt stress in rice: growth, physiological and biochemical characteristics. Journal of Plant Pathology, 94(2), 353–365.

Reddy, P. P. (2013). Bio-priming of seeds. In P. P. Reddy (Ed.), Recent advances in crop protection (pp. 83-90). Springer, India. doi:10.1007/978-81-322-0723-8

Reddy, C. S., & Smith, J. D. (1978). Effects of delayed post treatment of gamma-irradiated seed with cysteine on the growth of Sorghum bicolor seedlings. Environmental and Experimental Botany, 18, 241–243. doi:10.1016/0098-8472(78)90050-3

Rejeb, I. B., Pastor, V., & Mauch-Mani, B. (2014). Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants, 3, 458–475. doi:10.3390/plants3040458

Rock, C. D. (2000). Pathways to abscisic acid regulated gene expression. New Phytologist, 148, 357–384. doi:10.1046/j.1469-8137.2000.00769.x

Sadeghi, H., Khazaei, F., Yari, L., & Sheidaei, S. (2011). Effect of seed osmopriming on seed germination behavior and vigor of soybean (Glycine max L.). ARPN Journal of Agricultural and Biological Science, 6(1), 39–43.

Saha, P., Chatterjee, P., & Biswas, A. K. (2010). NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian Journal of Experimental Biology 48, 593–600.

Sakhabutdinova, A. R., Fatkhutdinova, D. R., Beazrukova, M. V., & Shakirova, F. M. (2003). Salicylic acid prevents the damaging action of stress factor of wheat plants. Bulgarian Journal of Plant Physiology, Special Issue, 314–319.

Salama, K. H. A., Mansour, M. M. F., & Hassan, N. S. (2011). Choline priming improves salt tolerance in wheat (Triticum aestivum L.). Australian Journal of Basic and Applied Sciences, 5(11), 126–132.

Sarkar, D., Pal, S., Singh, H. B., Yadav, R. S., & Rakshit, A. (2017). Harnessing bio-priming for integrated resource management under changing climate. In H.B. Singh, B.K. Sarma, & C. Keswani (Eds.), Advances in PGPR Research (pp. 349–363). CAB International, UK.

Schaefer, F. Q., & Buettner, G. R. (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and Medicine, 30(11), 1191–1212. doi:10.1016/S0891-5849(01)00480-4

Shakirova, F. M., Sakhabutdinova, A. R., Bezrokuva, M. V., Fatkhutdinova, R. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164, 317–322. doi:10.1016/S0168-9452(02)00415-6

Sharma, K. K., Singh, U. S., Sharma, P., Kumar, A., & Sharma, L. (2015). Seed treatments for sustainable agriculture-a review. Journal of Applied and Natural Science, 7(1), 521–539. doi:10.31018/jans.v7i1.641

Shirinzadeh, A., Soleimanzadeh, H., & Shirinzadeh, Z. (2013). Effect of seed priming with plant growth promoting rhizobacteria (PGPR) on agronomic traits and yield of barley cultivars. World Applied Sciences Journal, 21(5), 727–731.

Shukla, N., Kuntal, H., Shanker, A., & Sharma, S. (2018). Hydro-priming methods for initiation of metabolic process and synchronization of germination in mung bean (Vigna radiata L.) Seeds. Journal of Crop Science and Biotechnology, 21(2), 137–146. doi:10.1007/s12892-018-0017-0

Singh, H. B. (2016). Seed biopriming: a comprehensive approach towards agricultural sustainability. Indian Phytopathology, 69(3), 203–209.

Singh, H. P., Sharma, K. D., Reddy, G. S., & Sharma, K. L. (2004). Dryland agriculture in India. In S. C. Rao & J. Ryan (Eds.), Challenges and strategies of dryland agriculture (pp. 67–92). Madison, WI (USA), Crop Science Society of America, American Society of Agronomy.

Sneideris, L. C., Gavassi, M. A., Campos, M. L., D’Amico-Damiao, V., & Carvalho, R. F. (2015). Effects of hormonal priming on seed germination of pigeon pea under cadmium stress. Anais da Academia Brasileira Ciências, 87(3), 1847–1852. doi:10.1590/0001-3765201520140332

Soleimanzadeh, H. (2013). Effect of seed priming on germination and yield of corn. International Journal of Agriculture and Crop Sciences, 5(4), 366–369.

Srivastava, A. K., Lokhande, V. H., Patade, V. Y., Suprasanna, P., Sjahril, R., & D’Souza, S. F. (2010a). Comparative evaluation of hydro-, chemo-, and hormonal priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiologiae Plantarum, 32, 1135–1144. doi:10.1007/s11738-010-0505-y

Srivastava, A.K., Ramaswamy, N. K., Mukopadhyaya, R., Chiramal Jincy, M. G., & D’Souza, S. F. (2009). Thiourea modulates the expression and activity profile of mtATPase under salinity stress in seeds of Brassica juncea L. Annals of Botany, 103, 403–410. doi:10.1093/aob/mcn229

Srivastava, A.K., Suprasanna, P., Srivastava, S., & D’Souza, S.F. (2010b). Thiourea mediated regulation in the expression profile of aquaporins and its impact on water homeostasis under salinity stress in Brassica juncea roots. Plant Science, 178, 517–522. doi:10.1016/j.plantsci.2010.02.015

Sun, C. -X., Cao, H. -X., Shao, H. -B., Lei, X. –T., & Xiao, Y. (2011). Growth and physiological responses to water and nutrient stress in oil palm. African Journal of Biotechnology, 10(51), 10465–10471. doi:10.5897/AJB11.463

Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203, 32–43. doi:10.1111/nph.12797

Taylor, A. G., Allen, P. S., Bennett, M. A., Bradford, K. J., Burris, J. S., & Misra, M. K. (1998). Seed enhancements. Seed Science Research, 8, 245–256. doi:10.1017/S0960258500004141

Varier, A., Vari, A.K., & Dadlani, M. (2010). The subcellular basis of seed priming. Current Science, 99(4), 450–456.

Vaz Mondo, V. H., Nascente, A. S., Neves, P. D. C. F., Taillebois, J. E., & Oliveira, F. H. S. (2016). Seed hydropriming in upland rice improves germination and seed vigor and has no effects on crop cycle and grain yield. Australian Journal of Crop Science, 10(11), 1534–1542. doi:10.21475/ajcs.2016.10.11.PNE70

Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16(1), 86. doi:10.1186/s12870-016-0771-y

Wahid, A., Perveen, M., Gelani, S., & Basra, S. M. A. (2007). Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. Journal of Plant Physiology, 164, 283–294. doi:10.1016/j.jplph.2006.01.005

Wang, W., Chen, Q., Hussain, S., Mei, J., Dong, H., Peng, S, Huang, J., Cui, K., & Nie, L. (2016a). Pre-sowing seed treatments in direct-seeded early rice: consequences for emergence, seedling growth and associated metabolic events under chilling stress. Scientific Reports, 6, 19637. doi:10.1038/srep19637

Wang, W., Peng, S., Chen, Q., Mei, J., Dong, H., & Nie, L. (2016b). Effects of pre-sowing seed treatments on establishment of dry direct-seeded early rice under chilling stress. AoB Plants, 8, plw074. doi:10.1093/aobpla/plw074

Wojtyla, Ł., Lechowska, K., Kubala, S., & Garnczarska, M. (2016). Molecular processes induced in primed seeds—increasing the potential to stabilize crop yields under drought conditions. Journal of Plant Physiology, 203, 116–126. doi:10.1016/j.jplph.2016.04.008

Waqar, K., Surriya, O., Afzal, F., Kubra, G., Iram, S., Ashraf, M., & Kazi, A. G. (2014). Modern tools for enhancing crop adaptation to climatic changes. In P. Ahmad (Ed.), Emerging technologies and management of crop stress tolerance, volume 1 (pp. 143–157). Elsevier Inc. doi:10.1016/B978-0-12-800876-8.00007-2

Welch, R. M. (1986). Effects of nutrient deficiencies on seed production and quality. Advances in Plant Nutrition, 2, 205–247.

Xiong, L., & Zhu, J.K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell & Environment, 25, 131–139. doi:10.1046/j.1365-3040.2002.00782.x

Yadav, P. V., Kumari, M., & Ahmed, Z. (2011). Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Research Journal of Seed Science, 4(3), 125–136. doi:10.3923/rjss.2011.125.136

Yağmur, M., & Kaydan, D. (2008). Alleviation of osmotic stress of water and salt in germination and seedling growth of triticale with seed priming treatments. African Journal of Biotechnology, 7(13), 2156–2162.

Yilmaz, A., Ekiz, H., Gultekin, I., Torun, B., Barut, H., Karanlik, S., & Cakmak, I. (1998). Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient calcareous soils. Journal of Plant Nutrition, 21, 2257–2264. doi:10.1080/01904169809365559

Yuan-Yuan, S., Yong-Jian, S., Ming-Tian, W., Xu-Yi, L., Xiang, G., Rong, H., & Jun, M. (2010). Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agronomica Sinica, 36(11), 1931–1940. doi:10.1016/S1875-2780(09)60085-7

Zheng, M., Tao, Y., Hussain, S., Jiang, Q., Peng, S., Huang, J., Cui, K., & Nie, L. (2016). Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regulation, 78, 167–178. doi:10.1007/s10725-015-0083-5




DOI: http://dx.doi.org/10.14720/aas.2018.111.3.19

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Amitava Rakshit

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941