Učinki zastajanja vode v tleh na aktivnost nekaterih antioksidacijskih encimov in pridelek treh obetajočih linij pšenice
Povzetek
Ključne besede
Celotno besedilo:
PDF (English)Literatura
Amador, M.L., Sancho, S., Bielsa, B., Gomez-Aparisi, J., Rubio-Cabetas, M.J. (2012). Physiological and biochemical parameters controlling waterlogging stress tolerance in Prunus before and after drainage. Physiologia Plantarum, 144, 357–368. doi:10.1111/j.1399-3054.2012.01568.x
Arbona, V., Hossain, Z., Lo´pez-Climent, M.F., Pe´rez-Clemente, R.M., Go´mez-Cadenas, A. (2008). Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiologia Plantarum, 132, 452–466. doi:10.1111/j.1399-3054.2007.01029.x
Barret-Lennard, E.G. (2003). The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant and Soil, 253, 35-54. doi:10.1023/A:1024574622669
Bates, L., Waldren, R.P., Teatre, J.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. doi:10.1007/BF00018060
Biemelt, S., Keetman, U., Mock, H.P., Grimm, B. (2000). Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant, Cell & Environment, 23, 135-144. doi:10.1046/j.1365-3040.2000.00542.x
Blokhina, O.B., Fagerstedt, K.V., Chirkova, T.V. (1999). Relationships between lipid peroxidation and anoxia tolerance in a range of species during post-anoxic reaeration. Physiologia Plantarum, 105, 625-632. doi:10.1034/j.1399-3054.1999.105405.x
Ceylan, A. (Ed) (1994). Field Crop Production. Aegean University Press, Izmir, pp. 520.
Claussen, W. (2005). Proline as a measure of stress in tomato plants. Plant Science, 168, 241–248. doi:10.1016/j.plantsci.2004.07.039
Collaku, A., Harrison, S.A. (2002). Losses in wheat due to waterlogging. Crop Science, 42, 444-450. doi:10.2135/cropsci2002.4440
Dennis, E.S., Dolferus, R., Ellis, M., Rahman, M., Wu, Y., Hoeren, F.U., Grover, A., Ismond, K.P., Good, A.G., Peacock, W.J. (2000). Molecular strategies for improving waterlogging tolerance in plants. Journal of Experimental Botany, 342, 89–97. doi:10.1093/jexbot/51.342.89
Edreva, A. (2005). Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agriculture, Ecosystems & Environment, 106, 119–133. doi:10.1016/j.agee.2004.10.022
Fukao, T., Bailey-Serres, J. (2004). Plant responses to hypoxia – is survival a balancing act? Trends in Plant Science, 9, 449–456. doi:10.1016/j.tplants.2004.07.005
Gardner, W.K., Flood, R.G. (1993). Less waterlogging damage with long season wheats. Cereal Research Communications, 21, 337-343.
Gerami, M., Ghorbani, A., Karimi, S. (2018). Role of salicylic acid pretreatment in alleviating cadmium-induced toxicity in Salvia officinalis L. Iranian Journal of Plant Biology, 10(1), 81-95.
Ghorbani, A., Razavi, S.M., Ghasemi Omran, V.O., Pirdashti, H. (2018). Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biology, 20(4), 729-736. doi:10.1111/plb.12717
Gossett, D.R., Millhollon, E.P., Lucas, M.C. (1994). Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science, 34, 706–714. doi:10.2135/cropsci1994.0011183X003400030020x
Herzog, M., Striker, G.G., Colmer, T.D., Pedersen, O. (2016). Mechanisms of waterlogging tolerance in wheat--a review of root and shoot physiology. Plant, Cell & Environment, 39(5), 1068-86. doi:10.1111/pce.12676
Kumutha, D., Ezhilmathi, K., Sairam, R.K., Srivastava, G.C., Deshmukh, P.S., Meena, R.C. (2009). Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes. Physiologia Plantarum, 53(1), 75-84. doi:10.1007/s10535-009-0011-5
Lichtenthaler, H., Wellburm, A.R. (1983). Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochemical Society Transactions, 603, 591–593. doi:10.1042/bst0110591
Liu, F., Van Toai, T., Moy, L.P., Bock, G., Linford, L.D., Quackenbush, J. (2005). Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiology, 137, 1115–1129. doi:10.1104/pp.104.055475
Heath, R.L., Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics, 125(1), 189-198. doi:10.1016/0003-9861(68)90654-1
Luck, H. 1971. Catalase. In: Bergmeyer HU, editor. Methods of Enzymatic Analysis. New York: Academic Press. pp. 885–894.
Maehly, A.C., Chance, B. (1954). The assay of catalases and peroxidases. Methods of Biochemical Analysis, 1, 357–424. doi:10.1002/9780470110171.ch14
Meloni, D.A., Oliva, M.O., Martinez, C.A., Cambraia, J. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 49, 69–76. doi:10.1016/S0098-8472(02)00058-8
Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490–498. doi:10.1016/j.tplants.2004.08.009
Olgun, M., Kumlay, A.M., Adiguzel, M.C., Caglar, A. (2008). The effect of waterlogging in wheat (T.aestivum L.). Acta Agriculturae Scandinavica Section B- Soil and Plant Science, 58(3), 193-198.
Pang, J., Zhou, M., Mendham, N., Shabala, S. (2004). Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Australian Journal of Agricultural Research, 55, 895-906. doi:10.1071/AR03097
Saqib, M., Akhtar, J., Qureshi, R.H. (2004). Pot study on wheat growth in saline and waterlogged compacted soil. Soil & Tillage Research, 77, 169-177. doi:10.1016/j.still.2003.12.004
Sayre, K.D., Van Ginkel, M., Rajaram, S., Ortiz-Monasterio, I. (1994). Tolerance to waterlogging losses in spring bread wheat: effect of time of onset on expression. Annual Wheat Newsletter, 40, 165–171.
Setter, T.L., Burgess, P., Waters, I., Kuo, J. (2001). Genetic diversity of barley and wheat for waterlogging tolerance in Western Australia. In: Proceedings of the 10th Australian Barley Technical Symposium, Canberra, 16-20 September 2001, ACT, Australia.
Smethurst, C.F., Shabala, S. (2003). Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Functional Plant Biology, 30, 335-343. doi:10.1071/FP02192
Suzuki, N., Mittler, R. (2006). Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plantarum, 126, 45–51. doi:10.1111/j.0031-9317.2005.00582.x
Ushimaru, T., Maki, Y., Sano, S., Koshiba, K., Asada, K., Tsuji, H. (1997). Induction of enzymes involved in the ascorbate-dependent antioxidative system, namely ascorbate peroxidase, mono dehydroascorbate reductase and dehydroascorbate reductase, after exposure to air of rice (Oryza sativa) seedlings germinated under water. Plant and Cell Physiology, 38, 541-549. doi:10.1093/oxfordjournals.pcp.a029203
Van Toai, T.T., Bolles, C.S. (1991). Postanoxic injury in soybean (Glycine max) seedlings. Plant Physiology, 97, 588-592. doi:10.1104/pp.97.2.588
Videmšek, U., Turk, B., Vodnik, D. (2006). Root aerenchyma–formation and function. Acta Agriculturae Slovenica, 87, 445-453.
DOI: http://dx.doi.org/10.14720/aas.2018.111.3.10
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2018
##submission.license.cc.by-nc-nd4.footer##
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941