Učinki zastajanja vode v tleh na aktivnost nekaterih antioksidacijskih encimov in pridelek treh obetajočih linij pšenice

Fereshteh ALIZADEH-VASKASI, Hemmatollah PIRDASHTI, Ali CHERATI ARAEI, Sara SAADATMAND

Povzetek


Zastajanje vode v tleh je eden od najpomembnejših okoljskih stresov, ki ima negativni učinek na rast in pridelek pšenice. Namen raziskave je bil preučiti učinke zastajanja vode v tleh (0, 7, 14 in 21 dni) v fazah razraščanja (ZG21) in bilčenja (ZG31), prolina, malondialdehida (MDA), antioksidacijskih encimov, pridelek zrnja in komponenete pridelka treh obetajočih linij pšenice (N-93-19, N-93-9 in N-92-9). Povečanje stresa zaradi zastoja vode v tleh zmanjša vsebnost fotosinteznih pigmentov in aktivnost katalaze in poveča vsebnost prolina in MDA, poveča aktivnost superoksid dismutaze in peroksidaze pri vseh treh genotipih pšenice v vseh preučevanih fazah razvoja. Zastajanje vode v tleh je tudi zmanjšalo pridelek in njegove komponente pri vseh treh genotipih pšenice. Rezultati so pokazali, da se je genotip N-92-9 bolje odzval na razmere zastajanja vode v tleh v vseh preučevanih znakih kot ostala dva analizirana genotipa.

Ključne besede


stres zaradi zastajanja vode v tleh; antioksidacijski encimi; pšenica; prolin; pridelek: komponenete pridelka

Celotno besedilo:

PDF (English)

Literatura


Amador, M.L., Sancho, S., Bielsa, B., Gomez-Aparisi, J., Rubio-Cabetas, M.J. (2012). Physiological and biochemical parameters controlling waterlogging stress tolerance in Prunus before and after drainage. Physiologia Plantarum, 144, 357–368. doi:10.1111/j.1399-3054.2012.01568.x

Arbona, V., Hossain, Z., Lo´pez-Climent, M.F., Pe´rez-Clemente, R.M., Go´mez-Cadenas, A. (2008). Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiologia Plantarum, 132, 452–466. doi:10.1111/j.1399-3054.2007.01029.x

Barret-Lennard, E.G. (2003). The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant and Soil, 253, 35-54. doi:10.1023/A:1024574622669

Bates, L., Waldren, R.P., Teatre, J.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. doi:10.1007/BF00018060

Biemelt, S., Keetman, U., Mock, H.P., Grimm, B. (2000). Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant, Cell & Environment, 23, 135-144. doi:10.1046/j.1365-3040.2000.00542.x

Blokhina, O.B., Fagerstedt, K.V., Chirkova, T.V. (1999). Relationships between lipid peroxidation and anoxia tolerance in a range of species during post-anoxic reaeration. Physiologia Plantarum, 105, 625-632. doi:10.1034/j.1399-3054.1999.105405.x

Ceylan, A. (Ed) (1994). Field Crop Production. Aegean University Press, Izmir, pp. 520.

Claussen, W. (2005). Proline as a measure of stress in tomato plants. Plant Science, 168, 241–248. doi:10.1016/j.plantsci.2004.07.039

Collaku, A., Harrison, S.A. (2002). Losses in wheat due to waterlogging. Crop Science, 42, 444-450. doi:10.2135/cropsci2002.4440

Dennis, E.S., Dolferus, R., Ellis, M., Rahman, M., Wu, Y., Hoeren, F.U., Grover, A., Ismond, K.P., Good, A.G., Peacock, W.J. (2000). Molecular strategies for improving waterlogging tolerance in plants. Journal of Experimental Botany, 342, 89–97. doi:10.1093/jexbot/51.342.89

Edreva, A. (2005). Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agriculture, Ecosystems & Environment, 106, 119–133. doi:10.1016/j.agee.2004.10.022

Fukao, T., Bailey-Serres, J. (2004). Plant responses to hypoxia – is survival a balancing act? Trends in Plant Science, 9, 449–456. doi:10.1016/j.tplants.2004.07.005

Gardner, W.K., Flood, R.G. (1993). Less waterlogging damage with long season wheats. Cereal Research Communications, 21, 337-343.

Gerami, M., Ghorbani, A., Karimi, S. (2018). Role of salicylic acid pretreatment in alleviating cadmium-induced toxicity in Salvia officinalis L. Iranian Journal of Plant Biology, 10(1), 81-95.

Ghorbani, A., Razavi, S.M., Ghasemi Omran, V.O., Pirdashti, H. (2018). Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biology, 20(4), 729-736. doi:10.1111/plb.12717

Gossett, D.R., Millhollon, E.P., Lucas, M.C. (1994). Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science, 34, 706–714. doi:10.2135/cropsci1994.0011183X003400030020x

Herzog, M., Striker, G.G., Colmer, T.D., Pedersen, O. (2016). Mechanisms of waterlogging tolerance in wheat--a review of root and shoot physiology. Plant, Cell & Environment, 39(5), 1068-86. doi:10.1111/pce.12676

Kumutha, D., Ezhilmathi, K., Sairam, R.K., Srivastava, G.C., Deshmukh, P.S., Meena, R.C. (2009). Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes. Physiologia Plantarum, 53(1), 75-84. doi:10.1007/s10535-009-0011-5

Lichtenthaler, H., Wellburm, A.R. (1983). Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochemical Society Transactions, 603, 591–593. doi:10.1042/bst0110591

Liu, F., Van Toai, T., Moy, L.P., Bock, G., Linford, L.D., Quackenbush, J. (2005). Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiology, 137, 1115–1129. doi:10.1104/pp.104.055475

Heath, R.L., Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics, 125(1), 189-198. doi:10.1016/0003-9861(68)90654-1

Luck, H. 1971. Catalase. In: Bergmeyer HU, editor. Methods of Enzymatic Analysis. New York: Academic Press. pp. 885–894.

Maehly, A.C., Chance, B. (1954). The assay of catalases and peroxidases. Methods of Biochemical Analysis, 1, 357–424. doi:10.1002/9780470110171.ch14

Meloni, D.A., Oliva, M.O., Martinez, C.A., Cambraia, J. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 49, 69–76. doi:10.1016/S0098-8472(02)00058-8

Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490–498. doi:10.1016/j.tplants.2004.08.009

Olgun, M., Kumlay, A.M., Adiguzel, M.C., Caglar, A. (2008). The effect of waterlogging in wheat (T.aestivum L.). Acta Agriculturae Scandinavica Section B- Soil and Plant Science, 58(3), 193-198.

Pang, J., Zhou, M., Mendham, N., Shabala, S. (2004). Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Australian Journal of Agricultural Research, 55, 895-906. doi:10.1071/AR03097

Saqib, M., Akhtar, J., Qureshi, R.H. (2004). Pot study on wheat growth in saline and waterlogged compacted soil. Soil & Tillage Research, 77, 169-177. doi:10.1016/j.still.2003.12.004

Sayre, K.D., Van Ginkel, M., Rajaram, S., Ortiz-Monasterio, I. (1994). Tolerance to waterlogging losses in spring bread wheat: effect of time of onset on expression. Annual Wheat Newsletter, 40, 165–171.

Setter, T.L., Burgess, P., Waters, I., Kuo, J. (2001). Genetic diversity of barley and wheat for waterlogging tolerance in Western Australia. In: Proceedings of the 10th Australian Barley Technical Symposium, Canberra, 16-20 September 2001, ACT, Australia.

Smethurst, C.F., Shabala, S. (2003). Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Functional Plant Biology, 30, 335-343. doi:10.1071/FP02192

Suzuki, N., Mittler, R. (2006). Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plantarum, 126, 45–51. doi:10.1111/j.0031-9317.2005.00582.x

Ushimaru, T., Maki, Y., Sano, S., Koshiba, K., Asada, K., Tsuji, H. (1997). Induction of enzymes involved in the ascorbate-dependent antioxidative system, namely ascorbate peroxidase, mono dehydroascorbate reductase and dehydroascorbate reductase, after exposure to air of rice (Oryza sativa) seedlings germinated under water. Plant and Cell Physiology, 38, 541-549. doi:10.1093/oxfordjournals.pcp.a029203

Van Toai, T.T., Bolles, C.S. (1991). Postanoxic injury in soybean (Glycine max) seedlings. Plant Physiology, 97, 588-592. doi:10.1104/pp.97.2.588

Videmšek, U., Turk, B., Vodnik, D. (2006). Root aerenchyma–formation and function. Acta Agriculturae Slovenica, 87, 445-453.




DOI: http://dx.doi.org/10.14720/aas.2018.111.3.10

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2018

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941