Entomopatogena gliva, Lecanicillium lecanii R. Zare & W. Gams, vključena v MCM-41: Novi učinkoviti bio-insekticid za zatiranje mokaste kapusove uši (Brevicoryne brassicae (Linnaeus, 1758) (Hom: Aphididae)) pri zaščiti zelja

Asmar SOLEYMANZADE, Fereshteh KHORRAMI, Hana BATMANI, Khadijeh OJAGHI AGHBASH, Youbert GHOSTA

Povzetek


Mokasta kapusova uš (Brevicoryne brassicae) je pomemben škodljivec zelja in drugih zelenjadnic širom po svetu. Raziskava je bila izvedena za preučitev potencialne strategije povečanja insekticidne aktivnosti glive Lecanicillium lecanii za učinkovito in poceni zatiranje mokaste kapusove uši. Insekticidna učinkovitost čistega pripravka entomopatogene glive (PEF) in njene vključitve v MCM-41 (Mobil Composition of Matter)@L. lecanii) je bila ocenjena na kapusovi mokasti uši v laboratoriju in v rastlinjaku. Gliva, ki je bila vključena v MCM-41 je bila podrobno opisana z vrstičnim elektronskim mikroskopom (SEM), termogravimetrično analizo (TGA) in Fourierjevo transformacijsko unfrardečo tehniko (FT-IR). LC50 vrednosti za odrasle osebke mokaste kapusove uši so bile za PEF in MCM-41@gliva 1,9×106 in 2,5×104 ter 2,0×107 in 2,0×105 konidijev/ml v laboratoriju, oziroma rastlinjaku. Biotest je pokazal, da je kombinacija MCM-41@gliva značilno zmanjšala LC50 vrednosti entomopatogene glive in, da je bila bolj toksična za odrasle uši kot gliva sama. Rezultati so pokazali, da lahko imajo čiste kulture glive L. lecanii in njeni nano pripravki ključno vlogo kot biopesticidi v programih biološkega uravnavanja mokaste kapusove uši.


Ključne besede


Brevicoryne brassicae; Lecanicillium lecanii; MCM-41@gliva; virulenca

Celotno besedilo:

PDF (English)

Literatura


Abdollahi-Alibeik, M., & Pouriayevali, M. (2012). Nanosized MCM-41 supported protic ionic liquid as an efficient novel catalytic system for Friedlander synthesis of quinolones. Catalysis Communications, 22, 13-18. https://doi.org/10.1016/j.catcom.2012.02.004

Abdu-Allah, G. (2012). Aphicidal activity of Imidacloprid and Primicarb compared with certain plant extracts on Brevicoryne brassicae L. and Aphis craccivora Koch. Assiut Journal of Agricultural Science, 43, 104-114.

Alavo, T. B. (2015). The insect pathogenic fungus Verticillium lecanii (Zimm.) Viegas and its use for pests control: A review. Journal of Experimental Biology, 3, 337-345. https://doi.org/10.18006/2015.3(4).337.345

Burges, H.D. (1981). Microbial control of pests and plant diseases 1970-1980. Academic Press,London, 949 pp.

Cai, Q., Luo, Z.S., Pang, W.Q., Fan, Y.W., Chen, X.H., & Cui, F.Z. (2001). Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chemistry of materials, 13, 258-263. https://doi.org/10.1021/cm990661z

Collantes, L. G., Raman, K., & Cisneros, F. H. (1986). Effect of six synthetic pyrethroids on two populations of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), in Peru. Crop Protection, 5, 355-357. https://doi.org/10.1016/0261-2194(86)90116-X

Ghaffari, S., Karimi, J., Kamali, S., & Moghadam, E. M. (2017). Biocontrol of Planococcus citri (Hemiptera: Pseudococcidae) by Lecanicillium longisporum and Lecanicillium lecanii under laboratory and greenhouse conditions. Journal of Asia-Pacific Entomology, 20, 605-612. https://doi.org/10.1016/j.aspen.2017.03.019

Goettel, M.S., Koike, M., Kim, J.J., Aiuchi, D., Shinya, R., & Brodeur, J. (2008). Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. Journal of Invertebrate Pathology, 98, 256-261. https://doi.org/10.1016/j.jip.2008.01.009

Griffin, R.P., & Williamson, J. (2012). Cabbage, Broccoli and other cole crop insect pests HGIC 2203, Home and Garden information center. Clemson cooperative extension, Clemson University, Clemson, SC.

Hall, R. A. (1981). The fungus Verticillium lecanii as a microbial insecticide against aphids and scales. In: Burges HD (ed.) Microbial Control of Pests and Plant Diseases. Academic Press, London, New York.

Kanaoka, M., Isogai, A., Murakoshi, S., Ichinoe, M., Suzuki, A., & Tamura, S. (1978). Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Agricultural and Biological Chemistry, 42, 629-635. https://doi.org/10.1271/bbb1961.42.629

Llanderal-Cazares, C., Lagunes-Tejada, A., Carrillo-Sanchez, J. L., Sosa-Moss, C., Vera-Graziano, J., & Bravo-ojica, H. (1996). Susceptibility of Phthorimaea operculella (Zeller) to insecticides. Journal of Entomological Science, 31, 420-426. https://doi.org/10.18474/0749-8004-31.4.420

MousaviAnzabi, S.H., Nouri-Ghanbalani, G., Eivazi, A., & Ranji, A. (2013). Resistance Components of Canola, Brassica napus L. Genotypes to Cabbage Aphid Brevicoryne brassicae (L.). Applied Research in Plant Protection, 2, 85-100.

Neupane, F. P. (1999). Field Evaluation of Botanicals for the Management of Cruciferous Vegetable Insect Pests. Nepal Journal of Science and Technology, 1, 77-84.

Nikoorazm, M., Ghorbani-Choghamarani, A., Ghorbani, F., Mahdavi, H., & Karamshahi, Z. (2014). Bidentate salen Cu(II) complex functionalized on mesoporous MCM-41 as novel nano catalyst for the oxidative coupling of thiols into disulfides using urea hydrogen peroxide (UHP). Journal of Porous Materialsdoi https://doi.org/10.1007/s10934-014-9892-6

Ramanujam, B., Krishna, J., & Poornesha, B. (2017). Field evaluation of entomopathogenic fungi against cabbage aphid, Brevicoryne brassicae (L.) and their effect on coccinellid predator, Coccinella septempunctata (Linnaeus). Journal of Biological Control, 31,168-171. https://doi.org/10.18311/jbc/2017/16350

Rath, D., & Parida, K. M. (2011). Copper and nickel modified MCM-41 an efficient catalyst for hydrodehalogenation of chlorobenzene at room temperature. Industrial and Engineering Chemistry Research, 50, 2839-2849. https://doi.org/10.1021/ie101314f

Sabbour M. M. (2014). Evaluating toxicity of extracted nano-Destruxin against the desert locust Schistocerc agregaria in Egypt. The Journal of Egyptian Academic Society Environmental Development, 15, 9-17.

Schreiter, G., Butt, T.M., Beckett, A., Vestergaard, S., & Moritz, G. (1994). Invasion and development of Verticillium lecanii in the western flower thrips, Frankliniella occidentalis.Mycological Research, 98, 1025-1034. https://doi.org/10.1016/S0953-7562(09)80429-2

Sharma, A., & Gupta, R. (2009). Biological activity of some plant extracts against Pieris brassicae (Linn.). Journal of Biopesticides, 2 26-31.

Shylesh, S., & Singh, A. P. (2005).Vanadium-containing ordered mesoporous silicates: Does the silica source really affect the catalytic activity, structural stability, and nature of vanadium sites in V-MCM-41? Journal of Catalysis, 233, 359-371. https://doi.org/10.1016/j.jcat.2005.05.001

Suzuki, A., Kanaoka, M., Isogai, A., Tamura, S., Murakoshi, S., & Ichinoe, M. (1977). Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron Letters, 18, 2167-2170. https://doi.org/10.1016/S0040-4039(01)83709-6




DOI: http://dx.doi.org/10.14720/aas.2019.114.1.11

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2019

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941