S kromom vzpodbujena produkcija alkaloidov pri vrsti Catharanthus roseus (L.) G.Don v in vitro gojenih poganjkih in z njo povezani vzorci izražanja genov, še posebej novega gena GS

Elham KHATAEE, Farah KARIMI, Khadijeh RAZAVI

Povzetek


Namen raziskave je bil določiti učinke metil jasmonata (Mj) v povezavi s kromom (Cr) kot elicitorjev v produkciji medicinskih alakaloidov, njun antioksidacijski potencial in njune učinke na ekspresijo signalizacije in biosinteze encimov. Kombinirano obravnavanje je imelo pozitivne učinke na sekundarni metabolizem in spremenilo ravni izražanja genov mitogen-aktivirane protein kinase 3 (MAPK3), transkripcijskega faktorja (TF) poznanega kot oktadekanoid- odzivne Catharanthus AP2-domene 3 (ORCA3), ki vzpodbuja biosintezo rastlinskih alkaloidov. Največje ravni izražanja peroksidaze1 (PRX1), geisošizin sintaze (GS) (24 h-obravnavanja), MAPK3 in ORCA3 (8 h-obravnavanja) so bile 6,25−, 4,87-, 7,67-, in 5,38-krat večje kot pri kontroli kot odziv na hkratno obravnavanje s 100 µM Mj + 50 µM Cr. Ta vrednost je bila za striktozidin sintazo (STR) 5,92-kratna kot odziv na 100 µM Mj + 100 µM Cr po 24 h. Največji celokupni pridelek vinkristina je bil za 1,52-krat večji kot pri kontroli kot odziv na 100 µM Mj po enem tednu. Enako povečanje je bilo 2,16, 4,01, 2,39 in 1,97-kratno za ajmalicin, vinblastin, vindolin in katarantin, kot odziv na 100 µM Mj + 50 µM Cr. Mj + Cr lahko povečata produkcijo alkaloidov z indukcijo MAPK3 in ORCA3 signalne poti, ki inducira izražanje encimov za biosintezo terpenoid indolnih alkaloidov (TIAs).

Ključne besede


: antioksidacijski odziv; krom; GS; MAPK3; ORCA3; realni čas PCR

Celotno besedilo:

PDF (English)

Literatura


Aftab, T., Khan, M. M. A., Idrees, M., Naeem, M., & Hashmi, N. (2011). Methyl jasmonate counteracts boron toxicity by preventing oxidative stress and regulating antioxidant enzyme activities and artemisinin biosynthesis in Artemisia annua L. Protoplasma, 248(3), 601-612. https://doi.org/10.1007/s00709-010-0218-5

DalCorso, G., Farinati, S., Maistri, S., & Furini, A. (2008). How plants cope with cadmium: staking all on metabolism and gene expression. Journal of integrative plant biology, 50(10), 1268-1280. https://doi.org/10.1111/j.1744-7909.2008.00737.x

Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of agricultural and food chemistry, 50(10), 3010-3014. https://doi.org/10.1021/jf0115589

Dubey, S., Misra, P., Dwivedi, S., Chatterjee, S., Bag, S. K., Mantri, S. & Tripathi, P. (2010). Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC genomics, 11(1), 648. https://doi.org/10.1186/1471-2164-11-648

Eleftheriou, E. P., Adamakis, I. D. S., Panteris, E., & Fatsiou, M. (2015). Chromium-induced ultrastructural changes and oxidative stress in roots of Arabidopsis thaliana. International journal of molecular sciences, 16(7), 15852-15871. https://doi.org/10.3390/ijms160715852

Emamverdian, A., Ding, Y., Mokhberdoran, F., & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015. http://dx.doi.org/10.1155/2015/756120

Gao, F., Su, Q., Fan, Y., & Wang, L. (2010). Expression pattern and core region analysis of AtMPK3 promoter in response to environmental stresses. Science China Life Sciences, 53(11), 1315-1321. https://doi.org/10.1007/s11427-010-4079-0

Giri, C. C., & Zaheer, M. (2016). Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell, Tissue and Organ Culture (PCTOC), 126(1), 1-18. https://doi.org/10.1007/s11240-016-0985-6

Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1), 189-198. https://doi.org/10.1016/0003-9861(68)90654-1

Jung, S. (2004). Effect of chlorophyll reduction in Arabidopsis thaliana by methyl jasmonate or norflurazon on antioxidant systems. Plant Physiology and Biochemistry, 42(3), 225-231. https://doi.org/10.1016/j.plaphy.2004.01.001

Kumari, P., Reddy, C. R. K., & Jha, B. (2015). Methyl jasmonate-induced lipidomic and biochemical alterations in the intertidal macroalga Gracilaria dura (Gracilariaceae, Rhodophyta). Plant and Cell Physiology, 56(10), 1877-1889. https://doi.org/10.1093/pcp/pcv115

Kupper, F. C., Gaquerel, E., Cosse, A., Adas, F., Peters, A. F., Müller, D. G. & Potin, P. (2009). Free fatty acids and methyl jasmonate trigger defense reactions in Laminaria digitata. Plant and Cell Physiology, 50(4), 789-800. https://doi.org/10.1093/pcp/pcp023

Liu, D. H., Jin, H. B., Chen, Y. H., Cui, L. J., Ren, W. W., Gong, Y. F., & Tang, K. X. (2007). Terpenoid indole alkaloids biosynthesis and metabolic engineering in Catharanthus roseus. Journal of integrative plant biology, 49(7), 961-974. https://doi.org/10.1111/j.1672-9072.2007.00457.x

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262

Miranda‐Ham, L., & Islas‐Flores, I. (2007). Accumulation of monoterpenoid indole alkaloids in periwinkle seedlings (Catharanthus roseus) as a model for the study of plant–environment interactions. Biochemistry and Molecular Biology Education, 35(3), 206-210. https://doi.org/10.1002/bmb.60

Mourato, M., Reis, R., & Martins, L. L. (2012). Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. In Advances in selected plant physiology aspects. InTech. https://doi.org/10.5772/34557

Ncube, B., & Van Staden, J. (2015). Tilting plant metabolism for improved metabolite biosynthesis and enhanced human benefit. Molecules, 20(7), 12698-12731. https://doi.org/10.5772/34557

Ozturk, B., Yıldız, K., & Ozkan, Y. (2015). Effects of pre-harvest methyl jasmonate treatments on bioactive compounds and peel color development of ‘Fuji’ apples. International journal of food properties, 18(5), 954-962. https://doi.org/10.1080/10942912.2014.911312

Pan, Y. J., Liu, J., Guo, X. R., Zu, Y. G., & Tang, Z. H. (2015). Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus. Protoplasma, 252(3), 813-824. https://doi.org/10.1007/s00709-014-0718-9

Pan, Q., Mustafa, N. R., Tang, K., Choi, Y. H., & Verpoorte, R. (2016). Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochemistry reviews, 15(2), 221-250. https://doi.org/10.1007/s11101-015-9406-4

Peebles, C. A., Hughes, E. H., Shanks, J. V., & San, K. Y. (2009). Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metabolic engineering, 11(2), 76-86. https://doi.org/10.1016/j.ymben.2008.09.002

Poonam, S., Kaur, H., & Geetika, S. (2013). Effect of jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Millsp. Seedlings under copper stress. American Journal of Plant Sciences, 4(04), 817. https://doi.org/10.4236/ajps.2013.44100

Qu, Y., Easson, M. E., Simionescu, R., Hajicek, J., Thamm, A. M., Salim, V., & De Luca, V. (2018). Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine. Proceedings of the National Academy of Sciences, 115(12), 3180-3185. https://doi.org/10.1073/pnas.1719979115

Raina, S. K., Wankhede, D. P., Jaggi, M., Singh, P., Jalmi, S. K., Raghuram, B. & Sinha, A. K. (2012). CrMPK3, a mitogen activated protein kinase from Catharanthus roseus and its possible role in stress induced biosynthesis of monoterpenoid indole alkaloids. BMC plant biology, 12(1), 134. https://doi.org/10.1186/1471-2229-12-134

Sanchez-Rojo, S., Cerda-García-Rojas, C. M., Esparza-García, F., Plasencia, J., Poggi-Varaldo, H. M., Ponce-Noyola, T., & Ramos-Valdivia, A. C. (2015). Long-term response on growth, antioxidant enzymes, and secondary metabolites in salicylic acid pre-treated Uncaria tomentosa microplants. Biotechnology letters, 37(12), 2489-2496. https://doi.org/10.1007/s10529-015-1931-0

Sharmin, S. A., Alam, I., Kim, K. H., Kim, Y. G., Kim, P. J., Bahk, J. D., & Lee, B. H. (2012). Chromium-induced physiological and proteomic alterations in roots of Miscanthus sinensis. Plant science, 187, 113-126. https://doi.org/10.1016/j.plantsci.2012.02.002

Singh, K. B., Foley, R. C., & Oñate-Sánchez, L. (2002). Transcription factors in plant defense and stress responses. Current opinion in plant biology, 5(5), 430-436. https://doi.org/10.1016/S1369-5266(02)00289-3

Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in plant science, 6, 1143. https://doi.org/10.3389/fpls.2015.01143

Trinh, N. N., Huang, T. L., Chi, W. C., Fu, S. F., Chen, C. C., & Huang, H. J. (2014). Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiologia plantarum, 150(2), 205-224. https://doi.org/10.1111/ppl.12088

Van der Fits, L., & Memelink, J. (2000). ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science, 289(5477), 295-297. https://doi.org/10.1126/science.289.5477.295

Van Moerkercke, A., Steensma, P., Schweizer, F., Pollier, J., Gariboldi, I., Payne, R. & Kellner, F. (2015). The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proceedings of the National Academy of Sciences, 201504951. https://doi.org/10.1073/pnas.1504951112

Wójciak-Kosior, M., Sowa, I., Blicharski, T., Strzemski, M., Dresler, S., Szymczak, G. & Świeboda, R. (2016). The stimulatory effect of strontium ions on phytoestrogens content in Glycine max (L.) Merr. Molecules, 21(1), 90. https://doi.org/10.3390/molecules21010090

Zhang, H., Hedhili, S., Montiel, G., Zhang, Y., Chatel, G., Pré, M. & Memelink, J. (2011). The basic helix‐loop‐helix transcription factor CrMYC2 controls the jasmonate‐responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. The Plant Journal, 67(1), 61-71. https://doi.org/10.1111/j.1365-313X.2011.04575.x




DOI: http://dx.doi.org/10.14720/aas.2019.113.1.09

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2019

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941