Analiza vzorcev pridelkov žit in zrnatih stročnic na območju gozda in lesostepe Ukrajine z geografsko tehtano analizo glavnih komponent

Anastasiia ZYMAROIEVA, Oleksandr ZHUKOV

Povzetek


Namen prispevka je bil preučiti prostorsko heterogenost pridelkov poljščin iz podatkov zbranih iz 170 administrativnih okrožij na območju gozda in lesostepe Ukrajine v obdobju zadnjih 27 let z uporabo PCA in GWPCA metod. Rezultat analize spremenljivosti pridelkov žit in zrnatih stročnic z analizo glavnih komponent je bila določitev sedmih glavnih component, ki so skupno razložile 66,8 % celokupne variabilnosti pridelkov. Globalna analiza glavnih component je odkrila prisotnost dinamičnih procesov v spremenljivosti pridelkov žit in zrnatih stročnic, ki nihajo z različnimi frekvencami. Oscilatorne procese z različnimi frekvencami povezujemo z različnimi vzroki. Nihajoči procesi s periodo desetih ali več let so lahko povezanimi s podnebjem. Oscilatorni proces z najdalšo period (13 let) je značilen za prvo glavno komponento, ki razloži največji delež nihanja pridelkov žit in zrnatih stročnic (22,6 %). Mogoče je zaključiti, da med agroekološkimi dejavniki sprememba podnebja najbolj vpliva na pridelek poljščin. Klasterska analiza administrativnih območij je bila izvedena na osnovi dinamike spremeljivosti pridelkov žit in zrnatih stročnic. Grozdi so zemljepisno omejena administrativna območja, ki tvorijo skupaj prostorsko povezana območja, ki so označena kot agroekološke cone.


Ključne besede


pridelek; žita; zrnate stročnice; prostorska in časovna spremenljivost; analiza geografsko tehtanih glavnih komponent

Celotno besedilo:

PDF (English)

Literatura


Anselin, L.,Syabri, I., Kho, Y. (2005). GeoDa: An Introduction to Spatial Data Analysis. Geographical Analysis, 38 (1), 5–22. https://doi.org/10.1111/j.0016-7363.2005.00671.x

Comber, A.J., Harris, P., Tsutsumida, N. (2016). Improving land cover classification using input variables derived from a geographically weighted principal components analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 347-360. ISSN0924-2716. https://doi.org/10.1016/j.isprsjprs.2016.06.014

Filho, O. G., Vieira, S. R., Chiba, M. K., Nagumo, C. H., Dechen, S. C. F. (2010). Spatial and temporal variability of crop yield and some Rhodic Hapludox properties under no-tillage. Revista Brasileira de Ciência do Solo, 34 (1). http://dx.doi.org/10.1590/S0100-06832010000100001

Fotheringham, A.S., Brunsdon, C.,Charlton, M. (2002). Geographically Weighted Regression the analysis of spatially varying relationships. Wiley, Chichester, 284 p. ISBN: 978-0-471-49616-8.

Frieler, K., Schauberger, B., Arneth, A., Balkovi, J., Chryssanthacopoulos, J., Deryng, D., … Leverman, A. (2017). Understanding the weather signal in national crop-yield variability. Earth’s Future, 5, 605-616. http://dx.doi.org/10.1002/2016EF000525

Gollini, I., Lu, B., Charlton, M., Brunsdon, Ch., Harris, P. (2013). GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models. Journal of Statistical Software, 63(17), 1–52.https://doi.org/10.18637/jss.v063.i17

Hammond, M. P. & Kolasa, J. (2014). Spatial variation as a tool for inferring temporal variation and diagnosing types of mechanisms in ecosystems. PloS one, 9(2), e89245. https://doi.org/10.1371/journal.pone.0089245

Harris, P., Brunsdon, C. & Charlton, M. (2011). Geographically Weighted Principal Components Analysis. International Journal of Geographical Information Science. 25(10), 1717–1736.

http://dx.doi.org/10.1080/13658816.2011.554838.

Harris, P., Clarke, A., Juggins, S., Brunsdon, C., Charlton, M. (2015). Enhancements to a Geographically Weighted Principal Component Analysis in the Context of an Application to an Environmental Data Set. Geographical analysis, 47 (2), 146-172. http://dx.doi.org/10.1111/gean.12048

Hatzinger, R., Hornik, K., Nagel, H., Maier, M. J. (2014). R: Einführung durch angewandte Statistik (2nd ed.). München: Pearson Studium.

Horn, J.L. (1965). A rationale and a test for the number of factors in factor analysis. Psychometrika, 30, 179–185. http://dx.doi.org/10.1007/BF02289447

Iqbal, J., Thomasson, J.A., Jenkins, J.N., Owens, P.R., Whisler, F .D. (2005). Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society America journal, 69(4), 1338-1350. http://dx.doi.org/10.2136/sssaj2004.0154

Kaiser, H. F. (1974). An Index of Factorial Simplicity. Psychometrika, 39 (1), 31–36.https://doi.org/10.1007/BF02291575

Kaspari, M. & Yanoviak, S. (2009). Biogeochemistry and the Structure of Tropical Brown Food Webs. Ecology, 90, 3342–51.https://doi.org/10.1890/08-1795.1

Khosla, R., Fleming, K., Delgado, J.A., Shaver, T., Westfall, D.G. (2002). Use site-specific management zones to improve nitrogen management for precision agriculture. Journal of Soil and Water Conservation, 57, 513-518.

Koenker, R. & Bassett,G. Jr. (1978). Regression Quantiles. Econometrica, 46 (1), 33-49.

Koenker, R. & Bassett,G. Jr. (1982). Robust Tests for Heteroscedasticity Based on Regression Quantiles Econometrica, 50 (1), 43-61.https://doi.org/10.2307/1913643

Kong, L.Q., Zheng, H., Rao, E.M., Xiao, Y., Ouyang, Z.Y., Li, C. (2018). Evaluating indirect and direct effects of eco-restoration policy on soil conservation service in Yangtze River Basin. Science of the total environment, 631-632, 887-894. http://dx.doi.org/10.1016/j.scitotenv.2018.03.117

Kumar, S., Lal, R., Lloyd, C. D. (2012). Assessing spatial variability in soil characteristics with geographically weighted principal components analysis. Computational Geosciences,16 (3), 827-835. http://dx.doi.org/10.1007/s10596-012-9290-6

Lauzon, J. D., Fallow, D. J., O’Halloran, O. P., Gregory, S. D. L., Bertoldi, A. P. (2005). Assessing the temporal stability of spatial patterns in crop yields using combine yield monitor data. Canadian journal of soil science, 85(3), 439-451. https://doi.org/10.4141/S04-067

Lazarenko, P.I. (1995). Ecological and biological bases of agricultural zoning areas (Dnipropetrovsk region as an example). Kyiv, 476 p.

Legendre, P. & Gallagher, E. (2001). Ecological Meaningful Transformations for Ordination of Species Data. Oecologia, 129, 271–80.https://doi.org/10.1007/s004420100716

Li, Y.S. & Huang, M.B. (2008). Pasture yield and soil water depletion of continuous growing alfalfa in the Loess Plateau of China. Agriculture, Ecosystem & Environment, 124(1–2), 24–32. https://doi.org/10.1016/j.agee.2007.08.007

Li, Z.,Cheng, J., Wu, Q. (2015). Analyzing regional economic development patterns in a fast-developing province of China through geographically weighted principal components analysis. Letters in Spatial and Resource Science, 9 (3), 233-245. https://doi.org/10.1007/s12076-015-0154-

Liu, X., Zhu, X. H., Qiu, P., Chen, W. (2012). Correlation-Matrix-Based Hierarchical Clustering Method for Functional Connectivity Analysis. Journal of Neuroscience Methods, 211 (1), 94-102. http://dx.doi.org/10.1016/j.jneumeth.2012.08.016

Lloyd, C.D. (2010). Analysing population characteristics using geographically weighted principal components analysis: a case study of Northern Ireland in 2001. Computers, Environment and Urban System, 34(5), 389–399. https://doi.org/10.1016/j.compenvurbsys.2010.02.005

Lobell, D. B., Hammer, G. L., McLean, C., Roberts, M. J., Schlenker, W. (2013). The critical role of extreme heat for maize production in the United States. Nature Climat Change, 3(5), 497–501. https://doi.org/10.1038/nclimate1832

Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2, 17–23. https://doi.org/10.2307/2332142

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2(7–12), 559–572. https://doi.org/10.1080/14786440109462720

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrived from URL https://www.R-project.org/

State Statistics Service of Ukraine. Retrieved from http://www.ukrstat.gov.ua/

Zhukov, O. V. & Ponomarenko, S. V. (2018). Spatial-time dynamics of cereals of grain and grain crops in Poltava region. Bulletin of Poltava State Agrarian Academy, 1, 55–62.

Zhukov, O.V., Pelina, T.O., Demchuk, O. M., Demchuk, N. I., Koberniuk, S.O. (2018). Agroecological and agroeconomic aspects of the grain and grain legumes (pulses) yield dynamic within the Dnipropetrovsk region (period 1966-2016). Biosystems Diversity, 26(2), 3–10. ttps://doi.org/10.15421/011826

Zymaroieva, A., Zhukov, O., Fedonyuk, T., Pinkin, A. (2019 a). Application of geographically weighted principal components analysis based on soybean yield spatial variation for agro-ecological zoning of the territory. Agronomy Research, 17(6), 2460–2473. https://doi.org/10.15159/AR.19.208

Zymaroieva, A., Zhukov O., Romanchuck, L., Pinkin A. (2019 b). Spatiotemporal dynamics of cereals grains and grain legumes yield in Ukraine. Bulgarian Journal of Agricultural Science, 25 (6), 1107–1113.

Zymaroieva, A., Zhukov, O., Romanchuck, L. (2020a). The spatial patterns of long-term temporal trends in yields of soybean (Glycine max (L.) Merril) in the Central European Mixed Forests (Polissya) and East European Forest Steppe ecoregions within Ukraine. Journal of Central European Agriculture, 21(2), 320-332. https://doi.org/10.5513/JCEA01/21.2.2402

Zymaroieva A., Zhukov O., Fedonyuk T., Pinkina T. (2020b). The spatio-temporal trend of rapeseed yields in Ukraine as a marker of agro-economic factors influence. Agronomy Research, 18(S2), 1584–1596. https://doi.org/10.15159/AR.20.119




DOI: http://dx.doi.org/10.14720/aas.2020.116.2.873

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2020

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941