Izboljšanje prehranjenosti trde pšenice s fosforjem na peščenih apnenčastih tleh z dodajanjem izbranih organskih snovi mineralnim fosforjevim gnojilom
Povzetek
Ključne besede
Celotno besedilo:
PDF (English)Literatura
Acuña, H., & Inostroza. L. (2012). Phosphorus efficiency of naturalized Chilean white clover in a grazed field trial. Grass and Forage Science, 68, 125-137. https://doi.org/10.1111/j.1365-2494.2012.00879.x
Agbenin, J. O., & Igbokwe, S. O. (2006). Effect of soil–dung manure incubation on the solubility and retention of applied phosphate by a weathered tropical semi-arid soil. Geoderma, 133, 191-203. https://doi.org/10.1016/j.geoderma.2005.07.006
Alamgir, M., McNeill, A., Tang, C., & Marschner, P. (2012). Changes in soil P pools during legume residue decomposition. Soil Biology and Biochemistry, 49, 70-77. https://doi.org/10.1016/j.soilbio.2012.01.031
Amin, A. A. (2018). Availability and transformations of phosphorus in calcareous sandy soil as affected by farmyard manure and elemental sulfur applications. Alexandria Science Exchange Journal, 39, 98-111. https://doi.org/10.21608/asejaiqjsae.2018.5795
Brady, N. C., & Weil, R. R. (1999). The Nature and Properties of Soils. 12th Ed. Pearson Prentice Hal Inc. Upper Saddle River, New Jersey. USA.
Brady, N. C., & Weil, R. R. (2008). The Nature and Properties of Soils. Revised 14th Ed. Pearson Prentice Hal Inc. Upper Saddle River, New Jersey. USA.
Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P., & Ferrante, A. (2014). Biostimulants and crop responses: a review. Biological Agriculture and Horticulture, 31, 1-17. https://doi.org/10.1080/01448765.2014.964649
Deng, Y., Chen, K., Teng, W., Zhan, A., & Tong, Y. (2014). Is the Inherent Potential of Maize Roots Efficient for Soil Phosphorus Acquisition? PLoS ONE. 9. e90287. https://doi.org/10.1371/journal.pone.0090287
Duffera, M., & Robarge, W. P. (1999). Soil characteristics and management effects on phosphorus sorption by highland plateau soils of Ethiopia. Soil Science Society of America Journal, 63, 1455-1462. https://doi.org/10.2136/sssaj1999.6351455x
Fox, R. L., & Kamprath, E. J. (1970). Phosphate sorption isotherm for evaluating the phosphate requirements of soils. Soil Science Society of America. Proceedings, 34, 902-907. https://doi.org/10.2136/sssaj1970.03615995003400060025x
Gichangi, E. M., & Mnkeni, P. N. S. (2009). Effects of goat manure and lime addition on phosphate sorption by two soils from the Transkei Region. South Africa. Communications in Soil Science and Plant Analysis, 40, 3335-3347. https://doi.org/10.1080/00103620903325943
Grant, C. S., Bittman, M., Montreal, C., Plenchette., & Morel, C. (2004). Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Canadian Journal of Plant Science, 85, 3-14. https://doi.org/10.4141/P03-182
Guppy, C. N., Menzies, N. W., Moody, P. W., &Blamey, F. P. C. (2005). Competitive sorption reactions between phosphorus organic matter in soil: A review. Australian Journal of Soil Research, 43, 189-202. https://doi.org/10.1071/SR04049
Heidi, M. W., He. Z., & Erich, M. S. (2011). Effects of poultry manure amendment on phosphorus uptake by rye grass. soil phosphorus fraction and phosphatase activity. Biology and Fertility of Soils, 47, 407-418. https://doi.org/10.1007/s00374-011-0546-4
Ingham, E. R. (2002). The Compost tea brewing manual. 3rd Edition. Oregon. USA: Soil Food web Inc.
Iyamuremye, F., & Dick, R. P. (1996). Organic amendments and phosphorus sorption by soils. Advances in Agronomy, 56, 139-185. https://doi.org/10.1016/S0065-2113(08)60181-9
Javid, S., & Rowell, D. L. (2002). A laboratory study of the effect of time and temperature on the decline in Olsen P following phosphate addition to calcareous soils. Soil Use and Management, 18, 127-134. https://doi.org/10.1111/j.1475-2743.2002.tb00230.x
Kelly, J. M., Parker, G. R., & Mcfee, W. W. (1979). Heavy metal accumulation and growth of seedling of five species as influenced by soil cadmium level. Journal of Environmental Quality, 8, 361-364. https://doi.org/10.2134/jeq1979.00472425000800030019x
Kizilgoz, I., & Sakin, E. (2010). The effects of increased phosphorus application on shoot dry matter, shoot P and Zn concentrations in wheat (Triticum durum L.) and maize (Zea mays L.) grown in a calcareous soil. African Journal of Biotechnology, 9, 5893-5896.
Li, W., Li, L., Sun, J., Zhang, F., & Christie, P. (2003). Effects of nitrogen and phosphorus fertilizers and intercropping on uptake of nitrogen and phosphorus by wheat, maize, and faba bean. Journal of Plant Nutrition, 26, 629-642. https://doi.org/10.1081/PLN-120017670
Loeppert, R. H., & Dohnal, V. (1996). Methods of Soil Analysis, Part 3. Chemical Methods. SSSA Book series No. 5. Madison, WI.
Loneragan, J. F., & Asher, C. J. (1967). Response of plants to phosphate concentration in solution culture. II. Rate of phosphate absorption and its relation to growth. Soil Science, 103, 311-318. https://doi.org/10.1097/00010694-196705000-00002
Ma, B. G., Yang, T. X., Guo, F. T., & Han, J. J. (2005). Balance of phosphorus in a rotation system with winter-wheat and rice. Journal of Agro-Environment Science, 2, 371-374.
Ma, L., & Xu, R. (2010). Effects of regulation of pH and application of organic material on adsorption and desorption of phosphorus in three types of acid soils. Journal of Ecology and Rural Environment, 26, 596-599.
Mehdi, S. M., Abid, M., Sarfraz, M., Hafeez, M., & Hafeez, F. (2007). Wheat response to applied phosphorus in Light Textured Soil. Journal of Biological Sciences, 7, 1535-1538. https://doi.org/10.3923/jbs.2007.1535.1538
Mihoub, A., Daddi Bouhoun, M., & Naeem, A. (2018). Short-term effects of phosphate fertilizer enriched with low molecular weight organic acids on phosphorus release kinetic and availability under calcareous conditions in arid region. Journal of Scientific Agriculture, 2, 66-70. https://doi.org/10.25081/jsa.2018.v2.884
Mihoub, A., Daddi Bouhoun, M., & Saker, M. L. (2016). Phosphorus adsorption isotherm: A key aspect for effective use and environmentally friendly management of phosphorus fertilizers in calcareous soils. Communications in Soil Science and Plant Analysis, 47, 1920-1929. https://doi.org/10.1080/00103624.2016.1206923
Mihoub, A., Daddi Bouhoun, M., Naeem, A., & Saker, M. L. (2017). Low-molecular weight organic acids improve plant availability of phosphorus in different textured calcareous soils. Archives of Agronomy and Soil Science, 63, 1023-1034. https://doi.org/10.1080/03650340.2016.1249477
Mohanty, S., Paikaray, N. K., & Ranjan, A. R. (2006). Availability and uptake of phosphorus from organic manures in groundnut (Arachis hypogea L.)-corn (Zea mays L.) sequence using radio tracer technique. Geoderma, 133, 225-230. https://doi.org/10.1016/j.geoderma.2005.07.009
Moradi, N., Sadaghiani, M. R., Sepehr. E., & Mandoulakani, B. A. (2012). Effects of low-molecular-weight organic acids on phosphorus sorption characteristics in some calcareous soils. Turkish Journal of Agriculture and Forestry, 36, 459-468.
Nziguheba, G., Palm, C. A., Buresh, R. J., & Smithson, P. A. (1998). Soil phosphorus fractions and adsorption as affected by organic and inorganic sources. Plant and Soil, 198, 159-168. https://doi.org/10.1023/A:1004389704235
Pellerin, S., Mollier, A., Plénet, D. (2000). Phosphorus deficiency affects the rate of emergence and number of maize adventitious nodal roots. Agronomy Journal, 92, 690-697. https://doi.org/10.2134/agronj2000.924690x
Pinerio, A. L., Cabera, D., & Pena, D. (2009). Phosphorus Adsorption and fractionation in a two-phase olive mill waste amended soil. Soil Science Society of America Journal, 73, 1539-1544. https://doi.org/10.2136/sssaj2009.0035
Royo, C., Soriano, J. M., & Alvaro, F. (2017). Wheat: A Crop in the Bottom of the Mediterranean Diet Pyramid. In Mediterranean Identities-Environment, Society, Culture. IntechOpen. https://doi.org/10.5772/intechopen.69184
Sarfraz, M., Mehdi. S. M., Abid, M., & Akram, M. (2008). External and internal phosphorus requirement of wheat in Bhalike soil series of Pakistan. Pakistan journal of Botany, 40, 2031-2040.
Ström, L., Owen, A., Godbold, D., & Jones, D. (2001). Organic acid behavior in a calcareous soil: sorption reactions and biodegradation rates. Soil Biology & Biochemistry, 33, 2125-2133. https://doi.org/10.1016/S0038-0717(01)00146-8
Uburger, E., Jones, D. L., & Wenzel, W. W. (2011). Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion- mediated P solubilization mechanisms in soil. Plant and Soil, 341, 363-382. https://doi.org/10.1007/s11104-010-0650-5
Ur-Rehman, O., Mehdi, S. M., Ranjha, A. M., Sarfraz, M., Zulfiqar, A. M., Asim, M., & Quintero, G. C. E. (2002). Use of boundary line technique in the analysis of biology data. Journal of Biological Sciences, 7, 60-63.
Veneklaas, E. J., Lambers, H., Bragg, J., Finnegan, P. M., Lovelock, C. E., Plaxton, W. C., & Raven, J. A. (2012). Opportunities for improving phosphorus-use efficiency in crop plants. New Phytologist, 195, 306-320. https://doi.org/10.1111/j.1469-8137.2012.04190.x
Von Wandruszka, R. (2006). Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochemical Transactions, 7, 1-18. https://doi.org/10.1186/1467-4866-7-6
Waraich, E. A., Ahmad, Z., Ahmad, R., Saifullah., & Ashraf, M. Y. (2015). Foliar applied phosphorous enhanced growth. chlorophyll contents. gas exchange attributes and PUE in wheat (Triticum aestivum L.). Journal of plant nutrition, 38, 1929-1943. https://doi.org/10.1080/01904167.2015.1043377
Watanabe, F. S., & Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil 1. Soil Science Society of America Journal, 29, 677-678. https://doi.org/10.2136/sssaj1965.03615995002900060025x
DOI: http://dx.doi.org/10.14720/aas.2019.113.2.7
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2019
##submission.license.cc.by-nc-nd4.footer##
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941