Ugotavljanje učinkovitosti vladnih pomoči: primeri pridelovalcev paradižnika in paprike v rastlinjakih na Kosovu

Blend FRANGU, Jennie SHEERIN POPP, Michael THOMSEN, Arben MUSLIU

Povzetek


Genetsko ujemanje in razvojni alagoritem sta bila uporabljena pri vrednotenju vpliva programov pomoči Ministrstva za kmetijstvo, gozdarstvo in razvoj podeželja pri vzpodbujanju pridelave zelenjave v rastlinjakih na Kosovu. Glavni pripevek te raziskave je ocena pomoči na sezonski bruto prihodek kmetov, ki so vladno pomoč dobili v primerjavi s tistimi, ki je niso prejeli. Izsledki so pokazali, da je pomoč pri pridelavi paradižnika v rastlinjakih prispevala 2.151,80 EUR več na sezono v primerjavi s tistimi, ki pomoči niso dobili. (95 % interval zaupanja je znašal -324,71 do 4.628,31 EUR). Podobno je pomoč pri pridelavi paprike v rastlinjaku dala za 2.866,69 EUR več na sezono v primerjavi s tistimi, ki pomoči niso dobili (95 % interval zaupanja je bil 446,42 do 5.286,96 EUR). Raziskava je pokazala, da sta izobrazba kmetov in območje pridelave pomembni vplivni spremenljivki, ki bi lahko zanimali raziskovalce agrarne politike na Kosovu.

Ključne besede


ekonomika rastlinjakov; genetsko ujemanje; vladna pomoč kmetom; kmetijstvo Kosova

Celotno besedilo:

PDF (English)

Literatura


Ahmed, U. I., Ying, L., Bashir, M. K., Abid, M., Elahi, E. and Iqbal, M. A. (2016). Access to output market by small farmers: The case of Punjab, Pakistan. Journal of Animal and Plant Sciences, 26(3), 787–793.

Ali, A., Sharif, M., Mahmood, K. and Akmal, N. (2013). Determinants of cherry production and marketing in Pakistan: A propensity score matching approach. Agricultural Economics Review, 14(1).

Caliendo, M. and Kopeinig, S. (2008). Some practical guidance for the implementation of propensity score matching. Journal of Economic Surveys, 22, 31–72, doi:10.1111/j.1467-6419.2007.00527.x

D'Agostino, R. B. (1998). Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Statistics in Medicine, 17, 2265-2281, doi:10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0.CO;2-B

Dehejia, R. H. and Wahba, S. (2002). Propensity score matching methods for non-experimental causal studies. The Review of Economics and Statistics, 84, 151–161, doi:10.1162/003465302317331982

Diamond, A. and Sekhon, J. S. (2013). Genetic matching for estimating causal effects: A general multivariate matching method for achieving balance in observational studies. The Review of Economics and Statistics, 95, 932–945, doi:10.1162/REST_a_00318

Fîntîneru, G. and Madsen, O. (2012). Farmers' education and farm productivity. Evidence from Denmark and from Romania. AgroLife Scientific Journal, 2(1), 175–180.

Kaciu, S. (2008). Study of the current situation of pepper production in Kosovo. Retrieved from http://helvetas-ks.org/documentation/technical_reports/Study_of_the_current_situation_of_pepper_production_in_Kosovo_HPK_Prishtina_35.pdf.

Kaciu, S., Babaj, I., Aliu, S. and Demaj, I. (2016). Potential of protected vegetable production in Kosovo and future perspectives. Acta Hortic, 1142, 461–466, doi:10.17660/ActaHortic.2016.1142.70

Ling, C. and Newman, L. L. (2011). Untangling the Food Web: Farm-to-market distances in British Columbia, Canada. Local Environment, 16, 807–822, doi:10.1080/13549839.2010.539602

Martinovska Stojcheska A., Georgiev, N. and Erjavec, E. (2008). Farm income analysis of agricultural holdings in Macedonia using FADN methodology. Acta agriculturae Slovenica, 92(1), 41-51.

Miftari, I., Hoxha, B. and Gjokaj, E. (2016). Kosovo*: Agricultural policy brief (CAPB). Joint Research Centre: Institute for Prospective Technological Studies (IPTS).

Ministry of Agriculture, Forestry and Rural Development. (2016). Green report. Retrieved from http://www.mbpzhr-ks.net/repository/docs/Green_Report_Kosovo_2016_Final_050417.pdf.

Ministry of Agriculture, Forestry and Rural Development. (2017). Green report. Retrieved from http://www.mbpzhr-ks.net/repository/docs/Raporti_i_Gjelber_2017_Eng_Final.pdf.

Panda, S. (2015). Farmer education and household agricultural income in rural India. International Journal of Social Economics, 42, 514–529, doi:10.1108/IJSE-12-2013-0278

Ruiz, D., Stout, D. and Herlihy, C. (2017). Use of genetic matching in program evaluation: The case of RAD. Cityscape, 19(2), 337–349.

Sekhon, J. S. (2011). Multivariate and propensity score matching software with automated balance optimization: The Matching package for R. Journal of Statistical Software, 42, 1–52. doi:10.18637/jss.v042.i07

Stuart, E. (2010). Matching methods for causal inference: A review and a look forward. Statistical Science: A Review Journal of the Institute of Mathematical Statistics, 25(1), 1–21, doi:10.1214/09-STS313

Stuart, E. and Rubin, D. B. (2008). Best Practices in Quasi–Experimental Designs: Matching Methods for Causal Inference. Thousand Oaks, CA: SAGE Publications Ltd.

Terza, J. V., Basu, A. and Rathouz, P. J. (2008). Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling, Journal of Health Economics, 27(3), 531–543, doi:10.1016/j.jhealeco.2007.09.009




DOI: http://dx.doi.org/10.14720/aas.2018.111.3.17

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2018

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941