Fiziološki in biokemični odziv akcesij kitajske vinje (Vigna unguiculata (L.) Walp.) na toksičnost železa

Josiah ESEOGHENE IFIE, Sandra OMON IFIE-ETUMAH, Beckley IKHAJIAGBE

Povzetek


Raziskava je bila izvedena z namenom preučevanja učinkov toksičnosti železa na kitajsko vinjo na osnovi fiziološkega in biokemičnega odziva izbranih akcesij. 15 akcesij kitajske vinje je bilo izpostavljeno dvema obravnavanjema z raztopino FeSO4 (100 mg l-1 in 400 mg l-1) in destilirano vodo pri pH 6,2 kot kontrolo. Rezultati so pokazali, da je bilo splošno zmanjšanje v morfoloških parametrih kalitve in v odstotku kalitve pri akcesijah, ki so bile tretirane s 400 mg l-1 Fe. Tudi smrtnost semen je bila pri akcesijah, tretiranih s 400 mg l-1Fe značilno večja (> 35 %). Sposobnost nabrekanja z vodo in relativno povečanje mase sta bila večja pri z železom tretiranih akcesijah. Nadalje je bilo opaženo pri s 400 mg l-1 Fe tretiranih akcesijah značilno povečanje vsebnosti celokupnih sladkorjev in njihove porabe, kar je bilo spremljano z neznačilnim upadom vsebnosti klorofila a, z značilnim upadom klorofila b in pojavom listnih kloroz. Pri obravnavanjih s 400 mg l-1 Fe se je vsebnost MDA značilno povečala, medtem, ko so vsebnosti prolina ostale nespremenjene, poprečna aktivnost SOD se je neznačilno povečala, aktivnost Cat pa zmanjšala. Dokumentiranje teh sprememb v fizioloških in biokemičnih parametrih bo koristno za razumevanje vpliva povečanih koncentracij železa pri gojenju akcesij kitajske vinje v tleh povezanih z železovimi ultisoli.

Ključne besede


železov ultisol; Vigna unguiculata; akcesije kitajske vinje ; toksičnost železa; rastlinski antioksidanti; strpnost kitajske vinje; fiziološki odziv; biokemični odziv

Celotno besedilo:

PDF (English)

Literatura


Abdel-Haleem, A. H. E. (2015). Seed germination percentage and early seedling establishment of five (Vigna unguiculata L. (Walp) genotypes under salt stress. European Journal of Experimental Biology, 5(2), 22-32.

Ahenkora, K., AduDapaah, H. K., & Agyemang, A. (1998). Selected nutritional components and sensory attributes of cowpea (V. unguiculata (L.) Walp.) leaves. Plant Foods Human Nutrition, 52, 221–229. https://doi.org/10.1023/A:1008019113245

Ahmad, M. J., Akhtar, Z. A., & Zahir J. A. (2012). Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pakistan Journal of Botany, 44(5), 1569-1574.

Araújo, A.S. Ferreira de, L., Luciano, M., Melo, W., José de, S. Vilma, M., & Araujo, F. F. (2016). Soil properties and cowpea yield after six years of consecutive amendment of composted tannery sludge. Acta Scientiarum Agronomy, 38(3), 407-413. https://doi.org/10.4025/actasciagron.v38i3.28281

Arleta, M., Aneta, P., Anna, M., Anetta, H., Danuta, B., & Barbara, T. (2012). Antioxidative defense system in Pisum sativum roots exposed to heavy metals (Pb, Cu, Cd, Zn). Polish Journal of Environmental Studies, 21(6), 1721-1730.

Arnon, D.I. (1949). Copper enzymes in isolated chloroplast Polyphenol Oxidase in Beta vulgaris. Plant Physiology, 24, 1-15. https://doi.org/10.1104/pp.24.1.1

Bates, L., Waldren, R.P., & Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060

Batty, L.C., &Younger, P.L. (2003). Effects of External Iron Concentration upon Seedling Growth and Uptake of Fe and Phosphate by the Common Reed (Phragmites australis (Cav.) Trin ex.Steudel). Annals of Botany, 92, 801-806. https://doi.org/10.1093/aob/mcg205

Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276-287. https://doi.org/10.1016/0003-2697(71)90370-8

Bhagyashree, K.,Satyendra, N., & Prasad, S.M. (2016). Effect of cadmium doses on seed germination and morphology parameters of wheat (Triticum aestivum L.). The Ecoscan, 10(3&4), 491-494.

Bhattacharjee, S. (2008). Triadimefon pretreatment protects newly assembled membrane system and causes up-regulation of stress proteins in salinity stressed Amaranthus lividus L. during early germination. Journal of Environmental Biology, 29, 805-810.

Choudhary, M., Jetley, U.K., Khan, M.A, Zutshi, S., & Fatma, T. (2007). Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicology and Environmental Safety, 66, 204-209. https://doi.org/10.1016/j.ecoenv.2006.02.002

Clinfton, P.M. (2011). Protein and coronary heart disease: the role of different protein sources. Current Atherosclerosis Report, 13(6), 493-498. https://doi.org/10.1007/s11883-011-0208-x

Dufey, I., Hie, M.P., Hakizimana, P., Draye, X., Lutts, S., Kone, B., Drame, K.N., Konate, K.A., Sie, M., & Bertin, P. (2012). Multienvironment QTL mapping and consistency across environments of resistance mechanisms to ferrous iron toxicity in rice. Crop Science, 52, 539–550. https://doi.org/10.2135/cropsci2009.09.0544

Erja, T., Eava-Kaisa, H., Kari, T., & Kari, L. (2001). Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation Journal of Experimental Botany, 52(365), 2375–2380. https://doi.org/10.1093/jexbot/52.365.2375

Esma, H. A., & Gulnur, A. (2016). Determination of SOD, POD, PPO and CAT Enzyme Activities in Rumex obtusifolius L. Annual Research & Review in Biology, 11(3), 1-7. https://doi.org/10.9734/ARRB/2016/29809

Ezhilvannan, D., Sharavanan, P.S., & Vijayaragavan, M. (2011). Changes in growth, sugar and starch contents in groundnut (Arachis hypogaea L.) plants under nickel toxicity. Current Botany, 2(8), 24-26.

Gao, Y., Mao, L., & Zhou P. (2010). Antioxidative defense system differences among four plants under combined Pb and Cd stress. Chinese Journal of Eco-Agriculture, 18(4), 836-842. https://doi.org/10.3724/SP.J.1011.2010.00836

Health, R.L., & Packer, L. (1968). Photoperoxidation in an isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics, 125, 189-198. https://doi.org/10.1016/0003-9861(68)90654-1

IKhajiagbe, B., & Mgbeze, G.C. (2010).Growth and yield responses of Sphenostylis stenocarpa (Hochst ex. A Rich) Harms (African yam bean) to potassium application. African Journal of Biotechnology, 9(25), 3769-3774.

Ikhile, C.I. (2016). Geomorphology and Hydrology of the Benin Region, Edo State, Nigeria. International Journal of Geosciences, 7, 144-157. https://doi.org/10.4236/ijg.2016.72012

Imasuen, O.I., & Onyeobi, T.U.S. (2013). Chemical compositions of soils in parts of Edo State, Southwest Nigeria and their relationship to soil productivity. Journal of Applied Sciences and Environmental Management, 17(3), 379-386. https://doi.org/10.4314/jasem.v17i3.6

Krishnaveni, M., Kumar, J. S., & Sharvanan, P.S. (2015). Influence of lead on biochemicals and proline contents of Vigna unguiculata (L.) Walp. International Journal of Plant Science, 10(2), 142-151. https://doi.org/10.15740/HAS/IJPS/10.2/142-151

Luck, H. (1974). Methods in enzymatic analysis. New York, NY: Academic Press.

Malar, S., Shivendra ,V. S., Favas, J.C.P., & Perumal, V. (2016). Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths (Eichhornia crassipes (Mart.)). Botanical Studies, 55, 54. https://doi.org/10.1186/s40529-014-0054-6

Marin, A., Santos, D.M.M., Banzatto, D.A., & Codognotto, L.M. (2006). Influência da disponibilidade hídrica e acidez do solo nos teores de prolina livre de guandu. Pesquisa Agropecuária Brasileira, 41, 355-358. https://doi.org/10.1590/S0100-204X2006000200023

Maxwell, K., & Johnson, G.N. (2000). Chlorophyll fluorescence - A practical guide. Journal of Experimental Botany, 51, 659-668. https://doi.org/10.1093/jexbot/51.345.659

Mitra, G. N., Sahu, S. K., & Nayak, R. K. (2009). Ameliorating effects of potassium on iron toxicity in soils of Orissa. Presentation at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India.

Nabil, M., & Coudret, A. (1995). Effects of sodium chloride on growth, tissue elasticity and solute adjustment in two Acacia nilotica subspecies. Physiologia Plantarum, 93(2), 217-224. https://doi.org/10.1111/j.1399-3054.1995.tb02220.x

Nelson, N. (1944). A photometric adaptation of the Somogyis method for the determination of reducing sugar. Analytical Chemistry, 3, 426-428.

Olasoji, J.O., Olosunde, A.A., & Okoh, J. O. (2013). Physiological Quality of Cowpea Seeds Produced in Southwestern Nigeria. Greener Journal of Agricultural Sciences, 3(6), 469-473. https://doi.org/10.15580/GJAS.2013.3.10031279

Onyango, D.A., Fredrickson, E., Mathew, M. D., Abdelbagi, M. I., & Khady, N. D. (2019) Mechanistic understanding of iron toxicity tolerance in contrasting rice varieties from Africa: 1. Morpho-physiological and biochemical responses. Functional Plant Biology, 46, 93–105. https://doi.org/10.1071/FP18129

Prasad, A.G.D., Rahimpouran, S., & Komala H. P. (2014). Ecotoxicological effects of iron on the activities of antioxidant enzymes in Safflower (Carthamus tinctorius L.) seedlings. International Journal of Pure and Applied Bioscience, 2(5), 118-123

Priti, B., Ashish, K.C., & Prasad, P. (2009). Effect of Enhanced Lead and Cadmium in soil on Physiological and Biochemical attributes of Phaseolus vulgaris L. Nature and Science, 7(8), 63–75.

Ratering, S., & Schnell, S. (2000). Localization of iron-reducing activity in paddy soil by profile studies. Biochemistry, 48, 341-365. https://doi.org/10.1023/A:1006252315427

Sadeghi, H., Khazaei, F., Yari, L., & Sheidaei, S. (2011). Effect of seed osmo-priming on seed germination behavior and vigor of soybean (Glycine max L.). ARPN Journal Agricultural and Biological Science, 6, 39-42.

Sadeghipour, H., Abdolzadeh, A., & Mehrabanjoubani, P. (2008). Iron Toxicity in Rice (Oryza sativa L.), under Different Potassium Nutrition. Asian Journal of Plant Sciences, https://doi.org/10.3923/ajps.2008.251.259

Sankar, G. K., & Selvaraju, M. (2015). Growth and boichemical contents of Cowpea (Vigna unguiculata L.) on the application of zinc. World Scientific News, 16, 73-83.

Singh, G., Agnihotri, R., Reshma, R.S., & Ahmad, M. (2012). Effect of lead and nickel toxicity on chlorophyll and proline content of Urd (Vigna mungo L.) seedlings. International Journal of Plant Physiology and Biochemistry, 4, 136-141. https://doi.org/10.5897/IJPPB12.005

Spence, J.D., Jenkins, D.J., & Davignon, J. (2010). Dietary cholesterol and egg yolks: not for patients at risk of vascular disease. Canadian Journal of Cardiology, 26, e336-9. https://doi.org/10.1016/S0828-282X(10)70456-6

Sun, C., Ma, L., & Sheng, L. (2009).Soil naphthaline pollution stress on corn (Zea mays L.) seedling physiological effect. Journal of Agro-Environment Science, 28(3), 443-448.

Suresh, S. (2005). Characteristics of soils prone to iron toxicity and management - a review. Agricultural Reviews, 26(1), 50 – 58.

Wada, B.Y., & Abubakar, B.Y. (2013). Germination studies in some varieties of Vigna unguiculata L.Walp. (Cowpea) from Northern Nigeria. Parkistan Journal of Biological Sciences, 16(20), 1220-1222. https://doi.org/10.3923/pjbs.2013.1220.1222

Yamauchi, M., & Peng, X. X. (1993). Ethylene production in rice bronzing leaves induced by ferrous iron. Plant Soil, 149, 227-234. https://doi.org/10.1007/BF00016613




DOI: http://dx.doi.org/10.14720/aas.2020.115.1.969

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2020

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941