Pridelava ozimne pšenice v Ukrajini: ekološka ocena tehnologij glede na vplive na rodovitnost tal
Povzetek
Moderne tehnologije pridelave ozimne pšenice je potrebno izboljšati glede na ekološko ovrednotenje njihovega vpliva na indekse rodovitnosti tal. Namen raziskave je bil oceniti tehnologije pridelave ozimne pšenice na različnih tleh in klimatskih razmerah Ukrajine po njihovem vplivu na rodovitnost tal. Ugotovljeno je bilo, da je za oceno ekološke varnosti pridelave poljščin priporočljivo uporabiti metode, ki temeljijo na prepoznavanju negativnih učinkov na rodovitnost tal. Predlagamo naslednje skupine glede na odstopanja od optimalnega stanja: (i) močno odstopanje, ki vodi v nezadovoljive ekološke razmere (˃ 50 %), (ii) povprečno odstopanje, ki daje zadovoljivo stanje (˃ 25 %, a manj kot 50 %), (iii) zmerno odstopanje, ki daje normalno stanje (≤ 10 %, a manj kot 25 %), (iv) odstopanja ni, optimalno stanje (˂ 10 %). Ugotovljeno je bilo, da lahko imajo tehnologije pridelave ozimne pšenice v razmerah con polesja (Polissya), lesostepe (Forest-steppe) in stepe (Steppe) v Ukrajini negativni vpliv na režim kalija v tleh, jakost vpliva se spreminja od zmerne do močne. V polesju in lesostepi lahko pridelava ozimne pšenice vodi do poslapšanja pH tal. V stepi lahko tehnologije ob vplivu na režim kalija še močno negativno vplivajo na status dušika v tleh.
Ključne besede
Celotno besedilo:
PDF (English)Literatura
Arshad, M., Martin, S. (2002). Identifying critical limits for soil quality indicators in agroecosystems. Agriculture Ecosystems & Environment, 88(2), 153-160. https://doi.org/10.1016/S0167-8809(01)00252-3
Andrist-Rangel, Y., Edwards, A., Hillier, S., Öborn, I. (2007). Long-term K dynamics in organic and conventional mixed cropping systems as related to management and soil properties. Agriculture Ecosystem and Environment, 122, 413–426. https://doi.org/10.1016/j.agee.2007.02.007
Adhikari, T., Biswas, A.K., Ajay, Ramana, S., Saha, J.K., Singh, M.V., Kundu, S., Subba Rao, A. (2012a). Heavy metal pollution in soil-plant system and its remediation. IISS Technical Bulletin, Indian Institute of Soil Science, Bhopal, India, 1-57.
Bindraban, P.S, Stoorvogel, J.J, Jansen, D.M, Vlaming, J., Groot, J.R. (2000). Land quality indicators for sustainable land management: proposed method for yield gap and soil nutrient balance. Agriculture Ecosystem and Environment, 81, 103–112. https://doi.org/10.1016/S0167-8809(00)00184-5
Bastida, F., Zsolnay, A., Hernandez, T., Garcia, C. (2008). Past, present and future of soil quality indices: A biological perspective. Geoderma, 147(3-4), 159-171. https://doi.org/10.1016/j.geoderma.2008.08.007
Baliuk, S.A., Medvediev, V.V., Miroshnichenko, M.M., Skryl’yev, E.V., Timchenko, D.O., Fateev, A.I., Khristenko, A.O., Tsapko, Yu.L. (2012). Ecological state of soils of Ukraine. Ukrainian Geographic Magazine, 2, 38-42 [in Ukrainian].
Bennett, L.T., Mele, P.M., Annett, S., Kasel, S. (2010). Examining links between soil management, soil health, and public benefits in agricultural landscapes: An Australian perspective. Agriculture Ecosystems & Environment, 139(1-2), 1-12. https://doi.org/10.1016/j.agee.2010.06.017
Cardoso, E.J.B.N., Figueiredo Vasconcellos, R.L., Bini, D., Horta Miyauchi, M.Y., dos Santos, C.A., Lopes Alves, P.R., de Paula, A.M., Nakatani, A.S., Pereira, J.d.M., Nogueira, M.A. (2013). Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Scientia Agricola, 70(4), 274-289. https://doi.org/10.1590/S0103-90162013000400009
Davidson, D.A. (2000). Soil quality assessment: recent advances and controversies. Progress in Environmental Science, 2, 342-350.
FAO (2003). World Agriculture: Towards 2015/2030. An FAO Perspective. FAO, Rome.
Gil-Sotres, F., Trasar-Cepeda, C., Leiros, M.C., Seoane, S. (2005). Different approaches to evaluating soil quality using biochemical properties. Soil Biology & Biochemistry, 37(5), 877-887. https://doi.org/10.1016/j.soilbio.2004.10.003
Global Land Outlook. First Edition/ United Nations Convention to Combat Desertification (UNCCD) (2017). 336 p. Available at: https://library.unccd.int/Details/books/823
Hazrat, A., Ezzat, K., Ikram, I. (2019). Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Hindawi Journal of Chemistry, Volume 2019, 1-14. https://doi.org/10.1155/2019/6730305
IPBES (2018): The IPBES assessment report on land degradation and restoration. Montanarella, L., Scholes, R., and Brainich, A. (eds.). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany. 744 pages. Available at: https://www.ipbes.net/assessment-reports/ldr
Jaskulska, I., Jaskulski, D., Kobierski, M. (2014). Effect of liming on the change of some agrochemical soil properties in a long -term fertilization experiment. Plant Soil and Environment, 60(4), 146-150. https://doi.org/10.17221/850/2013-PSE
Jones, A., Ballabio, C., Fernandez, Ugalde O., Hervas, J., Lugato, E., Montanarella. L., Orgiazzi, A., Panagos, P., Paya Perez, A., Van Liedekerke, M., (2018). SOIL: how much do we value this critical resource? Highlights from recent JRC research. Ebook JRC1111081. 16 p. Available at: http://catalogue.unccd.int/1024_JRC_Soil_Highlights_eBook_0.pdf
Killebrew, K., Wolff, H. (2010). Environmental Impacts of Agriculture technologies. Evans School Policy Analysis and Research, 65, 1–18.
Karlen, D.L., Ditzler, C.A., Andrews, S.S. (2003). Soil quality: why and how? Geoderma, 114(3-4), 145-156. https://doi.org/10.1016/S0016-7061(03)00039-9
Kumar, K. and Shah, T. (2010). Available at: http://www.iwmi. cgiar.org/ iwmi-tata /files/pdf/ ground-pollute4_FULL_.pdf.
Lefebvre, A., W. Eilers, et B. Chunn (eds.). (2005). Environmental Sustainability of Canadian Agriculture: Agri-Environmental Indicator Report Series – Report 2. Agriculture and Agri-Food Canada, Ottawa, Ontario. 232 p.
Mueller, L., Schindler, U., Graham Shepherd , T., Ball , B.C., Smolentseva, E., Hu, C., Hennings , V., Schad, P., Rogasik, J., Zeitz, J., Schlindwein, S.L., Behrendt, A., Helming, K., Eulenstein, F. (2012). A framework for assessing agricultural soil quality on a global scale. Taylor & Francis, 58, S76-S82. https://doi.org/10.1080/03650340.2012.692877
Makarenko, N.A., Bondar, V. I. (2013). Technology of crops cultivation: environmental standardization by the degree of impact over agro-ecosystem’s condition. Annals of Agrarian Science, 11(4), 56-61.
Makarenko, N.A., Makarenko, V.V., Bondar, V.I. (2008). Environmental impact assessment of crop growing technologies. Agroecological magazine, Special edition, 14-17.
Makarenko, N.A., Bondar, V.I., Makarenko, V.V. (2012). Environmental inspection agro tech - guarantee sustainable development agricultural systems. Jornal of Agrucultural Sciences, 41-42. https://doi.org/10.34101/actaagrar/49/2476
Nortcliff, S. Standardisation of soil quality attributes. (2002). Agriculture Ecosystems & Environment, 88(2), 161-168. https://doi.org/10.1016/S0167-8809(01)00253-5
Petrenko, V., Liubich, V., & Bondar, V. (2017). Baking quality of wheat grain as influenced by agriculture systems, weather and storing conditions. Romanian agricultural research, 34, 69-76.
Puskás, I., Farsang, A. (2009). Diagnostic indicators for characterizing urban soils of Szeged, Hungary. Geoderma, 148(3–4), 267-281. https://doi.org/10.1016/j.geoderma.2008.10.014
State Standard of Ukraine. (2004). Soil quality. Soil fertility indices (Standard No. 4362) [in Ukrainian].
State Standard of Ukraine. (2002). Determination of mobile compounds of phosphorus and potassium by modified Machigin method. (Standard No. 4114) [in Ukrainian]. State Standard of Russia. (1991). Soils. Methods for determination of organic matter. (Standard No. 26213-91) [in Russian].
Shang, Y., Kamrul Hasan, Md., Golam Jalal, A., Li, M., Yin, H., Zhou, J. (2019). Applications of Nanotechnology in Plant Growth and Crop Protection: A Review. Molecules, 24(14), 2558. https://doi.org/10.3390/molecules24142558
Ţenu, I., Jităreanu, G., Muraru-Ionel, C., Cojocariu, P., Muraru,V. (2009). The impact of mechanization technologies on soil. Environmental Engineering and Management Journal, 8(5), 1263-1267. https://doi.org/10.30638/eemj.2009.185
Ukraine: Soil fertility to strengthen climate resilience. Preliminary assessment of the potential benefits of conservation agriculture. Prepared under the FAO/World Bank Cooperative Programme (2014). 96р. Available at: http://www.fao.org/3/a-i3905e.pdf
United Nations Development Programme (UNDP). Combatting Land Degradation: Securing a Sustainable Future (2019). 30p. Available at: https://www.undp.org/content/undp/en/home/librarypage/environment-energy/sustainable_land_management/combatting-land-degradation---securing-a-sustainable-future.html
Wasim, A. Md., Dwaipayan, S., Chowdhury A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12. https://doi.org/10.2478/v10102-009-0001-7
Yargholi, B., Azarneshan, S. (2014). Long-term effects of pesticides and chemical fertilizers usage on some soil properties and accumulation of heavy metals in the soil (case study of Moghan plain’s (Iran) irrigation and drainage network). International Journal of Agriculture and Crop Sciences, 7(8), 518-523.
Zhou, S., Liu, J., Xu, M., Lu, J. and Sun, N. (2015). Accumulation, availability, and uptake of heavy metals in a red soil after 22-year fertilization and cropping. Environmental Science and Pollution Research, 22, 15154–15163. https://doi.org/10.1007/s11356-015-4745-7
DOI: http://dx.doi.org/10.14720/aas.2020.115.1.982
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2020
##submission.license.cc.by-nc-nd4.footer##
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941