Vpliv koristnih talnih mikroorganizmov in endofitov na rastlinsko obrambo pred žuželkami
Povzetek
Ključne besede
Celotno besedilo:
PDFLiteratura
Baca B.E., Elmerich C. (2007). Microbial production of plant hormones. Associative and Endophytic Nitrogen-Fixing Bacteria and Cyanobacterial Associations, Springer, Netherlands, 113–143. https://doi.org/10.1007/1-4020-3546-2_6
Bae H. et al. (2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60, 3279–3295. https://doi.org/10.1007/1-4020-3546-2_6
Bakker P. et al. (2007). Induced systemic resistance by fluorescent Pseudomonas spp.. Phytopathology, 97, 239–243. https://doi.org/10.1094/PHYTO-97-2-0239
Barton K. E., Koricheva J. (2010). The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis. American Naturalist, 175, 481–493. https://doi.org/10.1086/650722
Bennett A. E. et al. (2010). Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. American Naturalist, 167, 141–152.
Bezemer T. M., van Dam N. M. (2005). Linking aboveground and belowground interactions via induced plant defenses. Trends in Ecology & Evolution, 20, 617–624. https://doi.org/10.1016/j.tree.2005.08.006
Bhardwaj D. et al. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13, 66. https://doi.org/10.1186/1475-2859-13-66
Borowicz V.A. (1997). A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia, 112, 534–542. https://doi.org/10.1007/s004420050342
Bukovinszky T. et al. (2008). Direct and indirect effect of resource quality on food web structure. Science, 319, 804–807. https://doi.org/10.1126/science.1148310
Cahill J.F. et al. (2008). Disruption of a belowground mutualism alters interactions between plants and their floral visitors. Ecology, 89, 1791–1801. https://doi.org/10.1890/07-0719.1
Contreras-Cornejo H.A. et al. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes leteral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149, 1579–1592. https://doi.org/10.1104/pp.108.130369
Dicke M. et al. (2009). Chemical complexity of volatiles from plants induced by multiple attack. Nature Chemical Biology, 5, 317–324. https://doi.org/10.1038/nchembio.169
Erb M. et al. (2009). The underestimated role of roots in defense against leaf attackers. Trends in Plant Science, 14, 653–659. https://doi.org/10.1016/j.tplants.2009.08.006
Evelin H. et al. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals Botany, 104, 1263–1280. https://doi.org/10.1093/aob/mcp251
Felestrino E.B. et al. (2017). Plant growth peooting bacteria associated with Langsdorffia hypogaea-rhizosphere-host biological interface: a neglected model of bacterial prospection. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2017.00172
Fiorilli, V. et al. (2011). The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infected by Botrytis cinerea. Journal of Plant Pathology, 93, 237–242.
Fontana A. et al. (2009). The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. Journal of Chemical Ecology, 35, 833–843. https://doi.org/10.1007/s10886-009-9654-0
Gamalero E., Glick B.R. (2015). Bacterial modulation of plant ethylene levels. Plant Physiology, 169, 13–22. https://doi.org/10.1104/pp.15.00284
Gange A.C. et. al. (2005). Ecological specificity of arbuscular mycorrhizal: evidence from foliar and seed-feeding insects. Ecology, 86, 603–611. https://doi.org/10.1890/04-0967
Gange A.C., Smith A.K. (2005). Arbuscular mycorrhizal fungi influence visitation rates of pollinating insects. Ecological Entomology, 30, 600–606. https://doi.org/10.1111/j.0307-6946.2005.00732.x
Gange A.C. (2007). Insect-mycorrhizal interactions: patterns, processes and consequences. In: Ecological Communities: Plant Mediation in Indirect Interaction Webs (Ohgushi T. et. al., eds), pp. 124–143. Cambridge University Press. https://doi.org/10.1017/CBO9780511542701.007
Gehring C.A., Whitham T.G. (1991). Herbivore-driven mycorrhizal mutualism in insect-susceptible pinyon pine. Nature, 353, 556–557. https://doi.org/10.1038/353556a0
Gehring C., Bennett A. (2009). Mycorrhizal fungal-plant-insect interactions: the importance of a community approach. Environmental Entomology, 38, 93–102. https://doi.org/10.1603/022.038.0111
Glick B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169, 30–39. https://doi.org/10.1016/j.micres.2013.09.009
Goverde M. et. al. (2000). Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia, 125, 362–369. https://doi.org/10.1007/s004420000465
Guerrieri E. et. al. (2004). Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecological Entomology, 29, 753–756. https://doi.org/10.1111/j.0307-6946.2004.00644.x
Harman G. E. et. al. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56. https://doi.org/10.1038/nrmicro797
Hartley S. E., Gange A. C. (2009). Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annual Review of Entomology, 54, 323–342. https://doi.org/10.1146/annurev.ento.54.110807.090614
Heil M. et. al. (2009). Ecological consequences of plant defence signalling. Advances in Botanical Research, 51, 667–716. https://doi.org/10.1016/S0065-2296(09)51015-4
Hempel S. et. al. (2009). Specific bottom-up effects of arbuscular mycorrhizal fungi across a plant-herbivore-parasitoid system. Oecologia, 160, 267–277. https://doi.org/10.1007/s00442-009-1294-0
Herman M. A. B. et. al. (2008). Effects of plant growth-promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. Crop Protection, 27, 996–1002. https://doi.org/10.1016/j.cropro.2007.12.004
Johnson S. N. et. al. (2009). Reappraising the role of plant nutrients as mediators of interactions between root- and foiliar-feeding insects. Functional Ecology, 23, 699–706. https://doi.org/10.1111/j.1365-2435.2009.01550.x
Jones M. D., Smith S. E. (2004). Exploring functional definitions of mycorrhizas: Are mycorrhizas always mutualisms? Canadian Journal of Botany, 82, 1089–1109. https://doi.org/10.1139/b04-110
Kaling M. et al. (2018). Mycorrhiza-Triggered Transcriptomic and Metabolomic Networks Impinge on Herbivore Fitness. Plant Physiology. https://doi.org/10.1104/pp.17.01810
Kempel A. et. al. (2009). Symbiotic soil microorganisms as players in aboveground plant-herbivore interactions – the role of rhizobia. Oikos, 118, 634–640. https://doi.org/10.1111/j.1600-0706.2009.17418.x
Kloepper J. W. et. al. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94, 1259–1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
Koricheva J. et. al. (2009). Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology, 90, 2088–2097. https://doi.org/10.1890/08-1555.1
Kosola K.R. et. al. (2004). Resilience of mycorrhizal fungi on defoliated and fertilized hybrid poplars. Canadian Journal of Botany, 82, 671–680. https://doi.org/10.1139/b04-038
Meena K.K. et al. (2017). Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Frontiers in Plant Science, 8, 172. https://doi.org/10.3389/fpls.2017.00172
Nguyen T.H. et al. (2017). BioGro: A plant growth-promoting biofertilizer validated by 15 years research from laboartory selection to rice farmer`s fields od the Mekong Delta. Agro-Enviromental Sustainability, Springer International Publishing (2017) pp. 237–254. https://doi.org/10.1007/978-3-319-49724-2_11
Pieterse C. M. J., Dicke M. (2007). Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends in Plant Science, 12, 564–569. https://doi.org/10.1016/j.tplants.2007.09.004
Pieterse C. M. J. et. al. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5, 308–316. https://doi.org/10.1038/nchembio.164
Pieterse C.M. et. al. (2012). Hormonal modulation of plant immunity. Annual review of cell and developmental biology, 28, 489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055
Pozo M. J., Azcon-Aguilar C. (2007). Unraveling mycorrhiza-induced resistance. Current Opinion of Plant Biology, 10, 393–398. https://doi.org/10.1016/j.pbi.2007.05.004
Pozo M.J. et al. (2008). Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytologist, 180, 511–523. https://doi.org/10.1111/j.1469-8137.2008.02578.x
Rudrappa T. et. al. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiology, 148, 1547–1556. https://doi.org/10.1104/pp.108.127613
Sanchez L. et. al. (2005). Pseudomonas fluorescens and Glomus mosseae trigger DMI3-dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula. Plant Physiology, 139, 1065–1077. https://doi.org/10.1104/pp.105.067603
Saravanakumar D. et. al. (2007). Pseudomonas-induced defence molecules in rice plants against leaffolder (Cnaphalocrocis medinalis) pest. Pest Management Science, 63, 714–721. https://doi.org/10.1002/ps.1381
Saravanakumar D. et. al. (2008). Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaffolder pest. Journal of Applied Entomology, 132, 469–479. https://doi.org/10.1111/j.1439-0418.2008.01278.x
Schoonhoven L. M. et. al., eds (2005). Insect-Plant Biology. Oxford University Press.
Schwachtje J. et. al. (2006). SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proceedings of the National Academy of Sciences of the United States of America National Academy of Sciences, 103, 12935–12940. https://doi.org/10.1073/pnas.0602316103
Schwachtje J., Baldwin I. T. (2008). Why does herbivore attack reconfigure primary metabolism? Plant Physiology, 146, 845–851. https://doi.org/10.1104/pp.107.112490
Segarra G. et. al. (2009). MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biology, 11, 90–96. https://doi.org/10.1111/j.1438-8677.2008.00162.x
Singh D.P. et al. (2011). Cyanobacteria-mediated phenylpropanoides and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Antonie van Leeuwenhoek, 100, 557–568. https://doi.org/10.1007/s10482-011-9611-0
Sinka M. et. al. (2009). Collembola respond to aphid herbivory but not to honeydew addition. Ecological Entomology, 34, 588–594. https://doi.org/10.1111/j.1365-2311.2009.01106.x
Snoeren T.A. L. et. al. (2009). Multidisciplinary approach to unravelling the relative contribution of different oxylipins in indirect defense of Arabidopsis thaliana. Journal of Chemical Ecology, 35, 1021–1031. https://doi.org/10.1007/s10886-009-9696-3
Soler R. et. al. (2007). Impact of foliar herbivory on the development of a root-feeding insects and its parasitoid. Oecologia, 152, 257–264. https://doi.org/10.1007/s00442-006-0649-z
Soto M. et. al. (2009). Mutualism versus pathogenesis: The give-and-take in plant-bacteria interactions. Cell Microbiology, 11, 381–388. https://doi.org/10.1111/j.1462-5822.2009.01282.x
Spaepen S., Vanderleyden J. (2011). Auxiin and plant microbe interactions. Cold Spring Harbor perspectives in biology, 3, 1438. https://doi.org/10.1101/cshperspect.a001438
Stein E. et. al.( 2008). Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiology, 49, 1747–1751. https://doi.org/10.1093/pcp/pcn147
Sthultz C.M. et. al. (2009). Genetically based susceptibility to herbivory influences the ectomycorrhizal fungal communities of a foundation tree species. New Phytologist, 184, 657–667. https://doi.org/10.1111/j.1469-8137.2009.03016.x
Trillas M. I. et. al. (2009). Interactions between nonpathogenic fungi and plants. Advances in Botanical Research, 51, 321–359. https://doi.org/10.1016/S0065-2296(09)51008-7
Trdan S. et. al. (2019). The effect of a mixture of two plant growth-promoting bacteria from Argentina on the yield of potato, and occurrence of primary potato diseases and pest-short communication. Acta Agriculturae Scandinavica, 69, 89–94.
Valenzuela-Soto J. H. et. al. (2010). Inoculation of tomato plants Solanum lycopersicum with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta, 231, 397–410. https://doi.org/10.1007/s00425-009-1061-9
Vannette R.L. and Hunter M.D. (2009). Mycorrhizal fungi as mediators of defence against insect pests in agricultural systems. Agricultural and Forest Entomology, 11, 351–358. https://doi.org/10.1111/j.1461-9563.2009.00445.x
Van der Ent S. et al. (2008). MYB72 is reqired in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiology, 146, 1293–1304. https://doi.org/10.1104/pp.107.113829
Van der Ent S. et al. (2009). Priming of plant innate immunity by rhizobacteria and beta-aminobutyric acid: differences and similarities in regulation. New Phytologist, 183, 419–431. https://doi.org/10.1111/j.1469-8137.2009.02851.x
Van der Ent S. et. al. (2009). Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry, 70, 1581–1588.
Van Loon L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 234–254. https://doi.org/10.1016/j.phytochem.2009.06.009
Van Loon L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 234–254. https://doi.org/10.1007/s10658-007-9165-1
Van Oosten V. R. et. al. (2008). Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Molecular Plant-Microbe Interactions, 21, 919–930. https://doi.org/10.1094/MPMI-21-7-0919
Van Wees S. C. M. et. al. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion of Plant Biology, 11, 443–448. https://doi.org/10.1016/j.pbi.2008.05.005
Vet L. E .M., Dicke M. (1992). Ecology of infochemical use by natural enemies in a tritrophic context. Annual Review of Entomology, 37, 141–172. https://doi.org/10.1146/annurev.en.37.010192.001041
Vidal S. (1996). Changes in suitability of tomato for whiteflies mediated by a non-pathogenic endophytic fungus. Entomologia experimentalis et applicata, 80, 272–274. https://doi.org/10.1111/j.1570-7458.1996.tb00933.x
Wamberg C. et. al. (2003). Interactions between foliar-feeding insects, mycorrhizal fungi and rhizosphere protozoa on pea plants. Pedobiologia, 47, 281–287. https://doi.org/10.1078/0031-4056-00191
Wardle D. A. et. al. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629–1633. https://doi.org/10.1126/science.1094875
Weyens N. et. al. (2009). Exploiting plant-microbe partnerships to improve biomass productions and remediation. Trends in Biotechnology, 27, 591–598. https://doi.org/10.1016/j.tibtech.2009.07.006
Yang J. et. al. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14, 1–4. https://doi.org/10.1016/j.tplants.2008.10.004
Zarate S. I. et. al. (2007). Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiology, 143, 866–875. https://doi.org/10.1104/pp.106.090035
Zhang P. J. et. al. (2009). Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proceedings of the National Academy of Sciences of the United States of America National Academy of Sciences, 106, 21202–21207. https://doi.org/10.1073/pnas.0907890106
Zhu-Salzman K. et. al. (2005). Molecular strategies of plant defense and insect counter-defense. Insect Science, 12, 3–15. https://doi.org/10.1111/j.1672-9609.2005.00002.x
DOI: http://dx.doi.org/10.14720/aas.2019.113.1.16
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2019
##submission.license.cc.by-nc-nd4.footer##
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941