Microbial biosensors for environmental monitoring



Microbial biosensors are analytical devices capable of sensing substances in the environment due to the specific biological reaction of the microorganism or its parts. Construction of a microbial biosensor requires knowledge of microbial response to the specific analyte. Linking this response with the quantitative data, using a transducer, is the crucial step in the construction of a biosensor. Regarding the transducer type, biosensors are divided into electrochemical, optical biosensors and microbial fuel cells. The use of the proper configuration depends on the selection of the biosensing element. With the use of transgenic E. coli strains, bioluminescence or fluorescence based biosensors were developed. Microbial fuel cells enable the use of the heterogeneous microbial populations, isolated from wastewater. Different microorganisms are used for different pollutants – pesticides, heavy metals, phenolic compounds, organic waste, etc. Biosensing enables measurement of their concentration and their toxic or genotoxic effects on the microbes. Increasing environmental awareness has contributed to the increase of interest for biomonitoring. Although technologies, such as bioinformatics and genetic engineering, allow us to design complex and efficient microbial biosensors for environmental pollutants, the transfer of the laboratory work to the field still remains a problem to solve.


microbiology; environmental protection; microbial biosensors; environmental pollutants; microbial fuel cells; bioluminescence; genetics; bioinformatics; genetic engineering

Full Text:



Aktar W., Sengupta D., Chowdhury A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary toxicology, 2: 1–12. doi:10.2478/v10102-009-0001-7

Anu Prathap M.U., Chaurasia A.K., Sawant S.N., Apte S.K. 2012. Polyaniline-based highly sensitive microbial biosensor for selective detection of lindane. Analytical Chemistry, 84: 6672−6678. doi:10.1021/ac301077d

Arias-Barreiro C.R., Okazaki K., Koutsaftis A., Inayat-Hussain H.S., Tani A., Katsuhara M., Kimbara K., Mori I.C. 2010. A bacterial biosensor for oxidative stress using the constitutively expressed redox-sensitive protein roGFP2. Sensors, 10: 6290–6306. doi:10.3390/s100706290

Ayyaru S., Dharmalingam S. 2014. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor. Analytica Chimica Acta, 818: 15–22. doi:10.1016/j.aca.2014.01.059

Bereza-Malcolm L.T., Mann G., Franks A.E. 2015. Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach. ACS Synthetic Biology, 4, 5: 535–546. doi:10.1021/sb500286r

Chan A.C., Ager D., Thompson I.P. 2013. Resolving the mechanism of bacterial inhibition by plant secondary metabolites employing a combination of whole-cell biosensors. Journal of Microbiological Methods, 93: 209–217. doi:10.1016/j.mimet.2013.03.021

Chee G.-J. 2013. Development and characterization of microbial biosensors for evaluating low biochemical oxygen demand in rivers. Talanta, 117: 366–370. doi:10.1016/j.talanta.2013.09.031

Di Lorenzo M., Thomson A.R., Schneider K., Cameron P.J., Ieropoulos I. 2014. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosensors and Bioelectronics, 62: 182–188. doi:10.1016/j.bios.2014.06.050

Du Z., Li H., Gu T. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25: 464–482. doi:10.1016/j.biotechadv.2007.05.004

Horsburgh A.M., Mardlin D.P., Turner N.L., Henkler R., Strachan N., Glover L.A., Paton G.I., Killham K. 2002. On-line microbial biosensing and fingerprinting of water pollutants. Biosensors and Bioelectronics, 17: 495–501. doi:10.1016/S0956-5663(01)00321-9

IUPAC. Compendium of chemical terminology. Gold book.Version 2.3.3. 2014: 1622 p.

Ivask A., Kurvet I., Kasemets K., Blinova I., Aruoja V., Suppi S., Vija H., Käkinen A., Titma T., Heinlaan M., Visnapuu M., Koller D., Kisand V., Kahru A. 2014. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PloS one, 9: 1–14. doi:10.1371/journal.pone.0102108

Järup L. 2003. Hazards of heavy metal contamination. British Medical Bulletin, 68: 167–182. doi:10.1093/bmb/ldg032

Kim M., Lim J.W., Kim H.J., Lee S.K., Lee J.L., Kim T. 2015. Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors. Biosensors and Bioelectronics, 65: 257–264. doi:10.1016/j.bios.2014.10.028

Kumar J., D'Souza S.F. 2010. An optical microbial biosensor for detection of methyl parathion using Sphingomonas sp. immobilized on microplate as a reusable biocomponent. Biosensors and Bioelectronics, 26: 1292–1296. doi:10.1016/j.bios.2010.07.016

Kumar J., D'Souza S.F. 2011. Microbial biosensor for detection of methyl parathion using screen printed carbon electrode and cyclic voltammetry. Biosensors and Bioelectronics, 26: 4289–4293. doi:10.1016/j.bios.2011.04.027

Kumar J., Kumar Jha S., D'Souza S.F. 2006. Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent. Biosensors and Bioelectronics, 21: 2100–2105. doi:10.1016/j.bios.2005.10.012

Liu B., Lei Y., Li B. 2014. A batch-mode cube microbial fuel cell based "shock" biosensor for waste water quality monitoring. Biosensors and Bioelectronics, 62: 308–314. doi:10.1016/j.bios.2014.06.051

Liu X., Du X., Wang X., Li N., Xu P., Ding Y. 2013. Improved microbial fuel cell performance by encapsulating microbial cells with a nickel-coated sponge. Biosensors and Bioelectronics, 41: 848–851. doi:10.1016/j.bios.2012.08.014

Mulchandani A., Rajesh. 2011. Microbial biosensors for organophosphate pesticides. Applied biochemistry and biotechnology, 165: 687–699. doi:10.1007/s12010-011-9288-x

Niazi J.H., Kim B.C., Ahn J.-M., Gu M.B. 2008. A novel bioluminescent bacterial biosensor using the highly specific oxidative stress-inducible pgi gene. Biosensors and Bioelectronics, 24: 670–675. doi:10.1016/j.bios.2008.06.026

Ooi L., Heng L.Y., Mori I.C. 2015. A high-throughput oxidative stress biosensor based on Escherichia coli roGFP2 cells immobilized in a k-carrageenan matrix. Sensors, 15: 2354–2368. doi:10.3390/s150202354

Rodriguez-Mozaz S., Marco M.-P., Lopez de Alda M., Barcelo D. 2004. Biosensors for environmental applications: Future development trends. Pure and applied chemistry, 76: 723–752. doi:10.1351/pac200476040723

Sagiroglu A., Paluzar H., Ozcan H.M., Okten S., Sen B. 2011. A novel biosensor based on lactobacillus acidophilus for determination of phenolic compounds in milk products and wastewater. Preparative Biochemistry and Biotechnology, 41: 321–336. doi:10.1080/10826068.2010.540607

Shen Y., Wang M., Chang S., Ng H.Y. 2013. Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II). Bioresource Technology, 136: 707–710. doi:10.1016/j.biortech.2013.02.069

Shin H.J. 2010. Development of highly-sensitive microbial biosensors by mutation of the nahR regulatory gene. Journal of Biotechnology, 150: 246–250. doi:10.1016/j.jbiotec.2010.09.936

Thevenot D.R., Toth K., Durst R.A., Wilson G.S. 2001. Electrochemical biosensors: recommended definitions and classification. Biosensors and Bioelectronics, 16: 121–131. doi:10.1081/al-100103209

Vaiopoulou E., Melidis P., Kampragou E., Aivasidis A. 2005. On-line load monitoring of wastewaters with a respirographic microbial sensor. Biosensors and Bioelectronics, 21: 365–371. doi:10.1016/j.bios.2004.10.022

Wang X., Liu M., Wang X., Wu Z., Yang L., Xia S., Chen L., Zhao J. 2013. P-benzoquinone-mediated amperometric biosensor developed with Psychrobacter sp. for toxicity testing of heavy metals. Biosensors and Bioelectronics, 41: 557–562. doi:10.1016/j.bios.2012.09.020

Wei T., Zhang C., Xu X., Hanna M., Zhang X., Wang Y., Dai H., Xiao W. 2013. Construction and evaluation of two biosensors based on yeast transcriptional response to genotoxic chemicals. Biosensors and Bioelectronics, 44: 138–145. doi:10.1016/j.bios.2013.01.029

Xu X., Ying Y. 2011. Microbial Biosensors for Environmental Monitoring and Food Analysis. Food Reviews International, 27: 300–329. doi:10.1080/87559129.2011.563393

Yong D., Liu C., Yu D., Dong S. 2011. A sensitive, rapid and inexpensive way to assay pesticide toxicity based on electrochemical biosensor. Talanta, 84: 7–12. doi:10.1016/j.talanta.2010.11.012

Yüce M., Nazir H., Dönmez G. 2010. An advanced investigation on a new algal sensor determining Pb(II) ions from aqueous media. Biosensors and Bioelectronics, 26: 321–326. doi:10.1016/j.bios.2010.08.022

DOI: http://dx.doi.org/10.14720/aas.2015.106.2.1


  • There are currently no refbacks.

Copyright (c) 2015 Acta agriculturae Slovenica


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941