Intensification of the drying process of small seed oilseeds using microwave electromagnetic radiation



One of the important and crucial stages of post-harvest treatment of rapeseed is drying. The purpose of the article is to improve the drying process of seeds of small seed oil crops using electromagnetic radiation of the microwave range in order to increase its productivity and determine the optimal operating parameters. The article describes the construction of a new microwave (UHF) dryer with a capacity of 200 kg h-1 for drying small-seeded crops. Curves were obtained that show the dependence of the heating temperature of seeds on microwave power, the effect of initial seed moisture and heating temperature on drying kinetics. The ratio of the stages of microwave heating and cooling was determined, which allows to increase the drying efficiency.


grain drying; rapeseed; electromagnetic radiation; drying kinetics; drying device

Full Text:



Béttega, R., Rosa, J. G., Corrêa, R. G., & Freire, J. T. (2014). Comparison of carrot (Daucus carota) drying in microwave and in vacuum microwave. Brazilian Journal of Chemical Engineering, 31(2), 403-412.

Budnikov, D. A. (2008). Intensification of grain drying by active ventilation using a microwave electromagnetic field (dis. ... cand. of tech. sciences).

Darvishi, H., Khoshtaghaza, M. H., Najafi, G., & Zarein, M. (2013).

Characteristics of sunflower seed drying and microwave energy consumption. International Agrophysics, 27(2), 127-132.

Fajzrahmanov, Sh. F. (2015). Development of a microwave conveyor installation for drying sunflower seeds with justification of its parameters and operating modes. (dis. ... cand. of tech. sciences), Ufa.

Fajzrahmanov, Sh. F., Ganeev, I. R. and Masalimov, I. H. (2014). Patent № 139803, MPK F26B 14/04 Multifunctional microwave conveyor system for drying and microwave processing of bulk materials, 2012112040/06; application 18.03.2013; published 20.04.2014, Bulletin, No 11, Russian Federation.

Friesen, A. P., Conner, R. L., Robinson, D. E., Barton, W. R., & Gillard, C. L. (2014). Effect of microwave radiation on dry bean seed infected with Colletotrichum lindemuthianum with and without the use of chemical seed treatment. Canadian journal of plant science, 94(8), 1373-1384.

Gabitov, I. I., Badretdinov, I. D., Mudarisov, S. G., Khasanov, E. R., Lukmanov, R. L., Nasyrov, R. R., ... & Pavlenko, V. A. (2018). Modeling the process of heap separation in the grain harvester cleaning system. Journal of Engineering and Applied Sciences, 13(S8), 6517-6526.

Ganeev, I. R. (2011). Improving the drying efficiency of rapeseed using electromagnetic radiation. Ufa.

Ganeev, I. R., & Masalimov, I. H. (2009). Choosing the optimal grain dryer construction for drying rapeseed. In: International scientific and technical conference dedicated to the 75th anniversary of the foundation of the Irkutsk State Aricultural Academy “Climate, Ecology, Agriculture of Eurasia” (p. 417-420). Irkutsk.

Ganeev, I. R., Efimov, A. V., & Saitov, B. N. 2009. The effect of the microwave emitter on the cells of rapeseed grains during their drying. In: III All-Russian scientific-practical conference “Youth science and agribusiness: problems and prospects.” (p. 78-81). Ufa: Bashkir State Agrarian University.

GOST (2008), Mine grain dryers. Power consumption indicators. State Standard 28293-89. Moscow: Standartinform.

Håkansson, I., Arvidsson, J., Etana, A., Rydberg, T., & Keller, T. (2013). Effects of seedbed properties on crop emergence. 6. Requirements of crops with small seeds. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 63(6), 554-563.

Jokiniemi, H. T., & Ahokas, J. M. (2014). Drying process optimisation in a mixed-flow batch grain dryer. Biosystems engineering, 121, 209-220.

Jokiniemi, T., Oksanen, T., & Ahokas, J. (2015). Continuous airflow rate control in a recirculating batch grain dryer. Agronomy Research, 13(1), 89-94.

Karimov, Kh. T, Ganeev, I. R., Masalimov, I. Kh., Permjakov, V. N., & Fajzrakhmanov, Sh. F. (2016). Device for drying and sorting bulk material. Invention № 2577909, Cl. F26B20/00 Bull. No 8, Russian Federation, Int.

Kovalyshyn, S. (2015). Improving The Quality Of Seeds Of Small Seeded Crops By Separating Biologically Inferior Seeds. Mechanization in agriculture & Conserving of the resources, 61(5), 17-21.

Kovalyshyn, S., Dadak, V., & Konyk, S. (2015). Intensification of the Process of Preparing Small Seed Crop Mixtures. Acta Technologica Agriculturae, 18(4), 108-112.

Li, S., Cao, S., & Meng, W. (2017, June). Construction of Grain Dryers’ Control System. In IOP Conference Series: Materials Science and Engineering (Vol. 212, No. 1, p. 012017). IOP Publishing.

Li, Y., Zhang, T., Wu, C., & Zhang, C. (2014). Intermittent microwave drying of wheat (Triticum aestivum L.) seeds. Journal of Experimental Biology and Agricultural Sciences, 2(1), 32-36.

Maier, D. E. (2017). Grain Drying, Handling, and Storage Handbook. MidWest Plan Service, Iowa State University.

Manikantan, M. R., Barnwal, P., & Goyal, R. K. (2014). Drying characteristics of paddy in an integrated dryer. Journal of food science and technology, 51(4), 813-819.

Martynov, V. M., Gabitov, I. I., Karimov, K. T., Masalimov, I. K., Permyakov, V. N., Ganeev, I. R., ... & Saitov, B. (2018). Reasoning Barley Grain Drying Modes For Vacuum-Infrared Drying Machines. Journal of Engineering and Applied Sciences, 13(S11), 8803-8811.

Masalimov, I. K., Faizrakhmanov, S. F., Gabitov, I. I., Martynov, V. M., Permyakov, V. N., Aipov, R. S., ... & Ramazanov, A. S. (2018). Optimal operating modes reasoning of sunflower seeds microwave drying in a conveyor type unit. Journal of Engineering and Applied Sciences, 13(S8), 6570-6575.

Moreno, Á. H., Hernández, R., & Ballesteros, I. (2017). Microwave drying of seeds of agricultural interest for Ecuador. Ampere Newsl, 92, 28-32.

Rogov, I. A. (1988). Electrophysical methods of food processing. M.: IN “Agropromizdat.

Skakov, M., Rakhadilov, B., & Sheffler, M. (2013). Influence of Electrolyte Plasma Treatment on Structure, Phase Composition and Microhardness of Steel Р6М5. In Key Engineering Materials (Vol. 531, pp. 627-631). Trans Tech Publications Ltd.

Soares, M. A. B., Jorge, L. M. D. M., & Montanuci, F. D. (2016). Drying kinetics of barley grains and effects on the germination index. Food Science and Technology, 36(4), 638-645.

Sutjagin, S. A., Kurdjumov, V. I., Pavlushin, A. A., & Dolgov, V. I. (2017). Reducing specific energy costs for drying grain in a contact type plant. Bulletin of the Samara State Agricultural Academy, 2, 39-45.

Zhao, Y., Jiang, Y., Zheng, B., Zhuang, W., Zheng, Y., & Tian, Y. (2017). Influence of microwave vacuum drying on glass transition temperature, gelatinization temperature, physical and chemical qualities of lotus seeds. Food chemistry, 228, 167-176.



  • There are currently no refbacks.

Copyright (c) 2020 Ildar Ganeev, Khasan Karimov, Shamil Fayzrakhmanov, Ilgam Masalimov, Valeri Permyakov

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941