Poyphenols – between neuroprotection and neurotoxicity

Lea POGAČNIK, Rui F.M. SILVA

Abstract


Polyphenols are a group of secondary metabolites found in a wide variety of foods, such as fruits, vegetables, wine, tea, olive oil and chocolate. These compounds, in addition to their antioxidant activity, also possess strong anti-inflammatory properties. Numerous studies have therefore confirmed their potential role in preventing and treating various pathological conditions associated with oxidative stress and inflammation. Among these, the most prevalent ones include cancer, cardiovascular and neurodegenerative diseases, which globally represent one of the main causes of death and are therefore a major social and financial burden,  Numerous studies have clarified some of the mechanisms of action of polyphenols as antioxidant and anti-inflammatory compounds and have clarified their role in treatment/prevention of certain conditions. It was shown that polyphenols could be used both as protective/prophylactic compounds and as therapeutic compounds. A sufficient amount can be achieved either by consuming a diet, rich in polyphenols, or in the form of dietary supplements and nevertheless with formulations such as nutraceuticals. The health effects of polyphenols depend not only on the amount consumed but also on their bioavailability. However, their overconsumption can cause safety concerns due to the accumulation of these molecules in the body, especially considering that the regulatory legislation in the field of dietary supplements is rather loose. Therefore, this review focuses on the major positive effects of natural-derived polyphenols, and addresses potential safety concerns, with a focus on neuroprotection and neurotoxicity.


Keywords


polyphenols; neuroprotection; nevrotoxicity; bioavailability; models in vitro

References


Abib, R. T., Peres, K. C., Barbosa, A. M., Peres, T. V., Bernardes, A., Zimmermann, L. M., . . . Gottfried, C. (2011). Epigallocatechin-3-gallate protects rat brain mitochondria against cadmium-induced damage. Food Chem Toxicol, 49(10), 2618-2623. doi:10.1016/j.fct.2011.07.006

Afshari, K., Haddadi, N. S., Haj-Mirzaian, A., Farzaei, M. H., Rohani, M. M., Akramian, F., . . . Abdolghaffari, A. H. (2019). Natural flavonoids for the prevention of colon cancer: A comprehensive review of preclinical and clinical studies. J Cell Physiol. doi:10.1002/jcp.28777

Afzal, M., Safer, A. M., & Menon, M. (2015). Green tea polyphenols and their potential role in health and disease. Inflammopharmacology, 23(4), 151-161. doi:10.1007/s10787-015-0236-1

Amor, S., Puentes, F., Baker, D., & van, d. V. (2010). Inflammation in neurodegenerative diseases. Immunology, 129(2), 154-169. Retrieved from PM:20561356

Anandhan, A., Essa, M. M., & Manivasagam, T. (2013). Therapeutic attenuation of neuroinflammation and apoptosis by black tea theaflavin in chronic MPTP/probenecid model of Parkinson's disease. Neurotox Res, 23(2), 166-173. doi:10.1007/s12640-012-9332-9

Aquilano, K., Baldelli, S., Rotilio, G., & Ciriolo, M. R. (2008). Role of nitric oxide synthases in Parkinson's disease: a review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem.Res., 33(12), 2416-2426.

Bernas, M. J., Cardoso, F. L., Daley, S. K., Weinand, M. E., Campos, A. R., Ferreira, A. J., . . . Brito, M. A. (2010). Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nat.Protoc., 5(7), 1265-1272. Retrieved from PM:20595955

Boyanapalli, S. S., & Tony Kong, A. N. (2015). "Curcumin, the King of Spices": Epigenetic Regulatory Mechanisms in the Prevention of Cancer, Neurological, and Inflammatory Diseases. Curr Pharmacol Rep, 1(2), 129-139. doi:10.1007/s40495-015-0018-x

Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev, 56(11), 317-333. doi:10.1111/j.1753-4887.1998.tb01670.x

Calabrese, V., Guagliano, E., Sapienza, M., Panebianco, M., Calafato, S., Puleo, E., . . . Stella, A. G. (2007). Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem.Res., 32(4-5), 757-773. Retrieved from PM:17191135

Cao, W., Dou, Y., & Li, A. (2018). Resveratrol Boosts Cognitive Function by Targeting SIRT1. Neurochem Res, 43(9), 1705-1713. doi:10.1007/s11064-018-2586-8

Capiralla, H., Vingtdeux, V., Zhao, H., Sankowski, R., Al-Abed, Y., Davies, P., & Marambaud, P. (2012). Resveratrol mitigates lipopolysaccharide- and Abeta-mediated microglial inflammation by inhibiting the TLR4/NF-kappaB/STAT signaling cascade. J.Neurochem., 120(3), 461-472. Retrieved from PM:22118570

Carrasco-Pozo, C., Cires, M. J., & Gotteland, M. (2019). Quercetin and Epigallocatechin Gallate in the Prevention and Treatment of Obesity: From Molecular to Clinical Studies. J Med Food. doi:10.1089/jmf.2018.0193

Chang, S. C., Cassidy, A., Willett, W. C., Rimm, E. B., O'Reilly, E. J., & Okereke, O. I. (2016). Dietary flavonoid intake and risk of incident depression in midlife and older women. Am J Clin Nutr, 104(3), 704-714. doi:10.3945/ajcn.115.124545

Charradi, K., Mahmoudi, M., Bedhiafi, T., Jebari, K., El May, M. V., Limam, F., & Aouani, E. (2018). Safety evaluation, anti-oxidative and anti-inflammatory effects of subchronically dietary supplemented high dosing grape seed powder (GSP) to healthy rat. Biomed Pharmacother, 107, 534-546. doi:10.1016/j.biopha.2018.08.031

Costa, S. L., Silva, V. D., Dos Santos Souza, C., Santos, C. C., Paris, I., Munoz, P., & Segura-Aguilar, J. (2016). Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases. Neurotox Res, 30(1), 41-52. doi:10.1007/s12640-016-9600-1

Crozier, A., Jaganath, I. B., & Clifford, M. N. (2009). Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep, 26(8), 1001-1043. doi:10.1039/b802662a

D'Archivio, M., Filesi, C., Di Benedetto, R., Gargiulo, R., Giovannini, C., & Masella, R. (2007). Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita, 43(4), 348-361. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18209268

D’Archivio, M., Filesi, C., Varì, R., Scazzocchio, B., & Masella, R. (2010). Bioavailability of the Polyphenols: Status and Controversies. International Journal of Molecular Sciences, 11(4), 1321-1342. doi:10.3390/ijms11041321

Dajas, F., Abin-Carriquiry, J. A., Arredondo, F., Blasina, F., Echeverry, C., Martinez, M., . . . Vaamonde, L. (2015). Quercetin in brain diseases: Potential and limits. Neurochemistry International, 89, 140-148. doi:10.1016/j.neuint.2015.07.002

Deli, M. A., Ábrahám, C. S., Kataoka, Y., & Niwa, M. (2005). Permeability Studies on In Vitro Blood–Brain Barrier Models: Physiology, Pathology, and Pharmacology. Cellular and Molecular Neurobiology, 25(1), 59-127. doi:10.1007/s10571-004-1377-8

Egert, S., Wolffram, S., Bosy-Westphal, A., Boesch-Saadatmandi, C., Wagner, A. E., Frank, J., . . . Mueller, M. J. (2008). Daily quercetin supplementation dose-dependently increases plasma quercetin concentrations in healthy humans. J Nutr, 138(9), 1615-1621. doi:138/9/1615 [pii]

Faria, A., Mateus, N., & Calhau, C. (2012). Flavonoid transport across blood-brain barrier: Implication for their direct neuroprotective actions. Nutrition and Aging, 1, 89-97. doi:10.3233/NUA-2012-0005

Faria, A., Meireles, M., Fernandes, I., Santos-Buelga, C., Gonzalez-Manzano, S., Duenas, M., . . . Calhau, C. (2014). Flavonoid metabolites transport across a human BBB model. Food Chem, 149, 190-196. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24295694

Faria, A., Pestana, D., Teixeira, D., Azevedo, J., Freitas, V., Mateus, N., & Calhau, C. (2010). Flavonoid transport across RBE4 cells: A blood-brain barrier model. Cellular & Molecular Biology Letters, 15(2), 234-241. doi:10.2478/s11658-010-0006-4

Fernandes, A., Falcao, A. S., Silva, R. F., Gordo, A. C., Gama, M. J., Brito, M. A., & Brites, D. (2006). Inflammatory signalling pathways involved in astroglial activation by unconjugated bilirubin. J.Neurochem., 96(6), 1667-1679. Retrieved from PM:16476078

Garcia, G., Nanni, S., Figueira, I., Ivanov, I., McDougall, G. J., Stewart, D., . . . Santos, C. N. (2017). Bioaccessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation. Food Chem, 215, 274-283. doi:10.1016/j.foodchem.2016.07.128

Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C., & Gage, F. H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell, 140(6), 918-934. Retrieved from PM:20303880

Godos, J., Castellano, S., Ray, S., Grosso, G., & Galvano, F. (2018). Dietary Polyphenol Intake and Depression: Results from the Mediterranean Healthy Eating, Lifestyle and Aging (MEAL) Study. Molecules, 23(5). doi:10.3390/molecules23050999

Godos, J., Marventano, S., Mistretta, A., Galvano, F., & Grosso, G. (2017). Dietary sources of polyphenols in the Mediterranean healthy Eating, Aging and Lifestyle (MEAL) study cohort. Int J Food Sci Nutr, 68(6), 750-756. doi:10.1080/09637486.2017.1285870

Granzotto, A., & Zatta, P. (2014). Resveratrol and Alzheimer's disease: message in a bottle on red wine and cognition. Front Aging Neurosci, 6, 95. doi:10.3389/fnagi.2014.00095

Gray, N. E., Zweig, J. A., Caruso, M., Zhu, J. Y., Wright, K. M., Quinn, J. F., & Soumyanath, A. (2018). Centella asiatica attenuates hippocampal mitochondrial dysfunction and improves memory and executive function in beta-amyloid overexpressing mice. Mol Cell Neurosci, 93, 1-9. doi:10.1016/j.mcn.2018.09.002

Grosso, G., Stepaniak, U., Topor-Madry, R., Szafraniec, K., & Pajak, A. (2014). Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study. Nutrition, 30(11-12), 1398-1403. doi:10.1016/j.nut.2014.04.012

Hartman, R. E., Shah, A., Fagan, A. M., Schwetye, K. E., Parsadanian, M., Schulman, R. N., . . . Holtzman, D. M. (2006). Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer's disease. Neurobiol.Dis., 24(3), 506-515.

Hu, J., Webster, D., Cao, J., & Shao, A. (2018). The safety of green tea and green tea extract consumption in adults - Results of a systematic review. Regul Toxicol Pharmacol, 95, 412-433. doi:10.1016/j.yrtph.2018.03.019

Hur, S. J., Lim, B. O., Decker, E. A., & McClements, D. J. (2011). In vitro human digestion models for food applications. Food Chemistry, 125(1), 1-12. doi:10.1016/j.foodchem.2010.08.036

Johnson, W. D., Morrissey, R. L., Usborne, A. L., Kapetanovic, I., Crowell, J. A., Muzzio, M., & McCormick, D. L. (2011). Subchronic oral toxicity and cardiovascular safety pharmacology studies of resveratrol, a naturally occurring polyphenol with cancer preventive activity. Food Chem Toxicol, 49(12), 3319-3327. doi:10.1016/j.fct.2011.08.023

Kay, C. D., Mazza, G. J., & Holub, B. J. (2005). Anthocyanins exist in the circulation primarily as metabolites in adult men. J Nutr, 135(11), 2582-2588. doi:135/11/2582 [pii]

Kelly, E., Vyas, P., & Weber, J. T. (2017). Biochemical Properties and Neuroprotective Effects of Compounds in Various Species of Berries. Molecules, 23(1). doi:10.3390/molecules23010026

Lee, H. H., Yang, L. L., Wang, C. C., Hu, S. Y., Chang, S. F., & Lee, Y. H. (2003). Differential effects of natural polyphenols on neuronal survival in primary cultured central neurons against glutamate- and glucose deprivation-induced neuronal death. Brain Res., 986(1-2), 103-113.

Lee, J. H., Moon, J. H., Kim, S. W., Jeong, J. K., Nazim, U. M., Lee, Y. J., . . . Park, S. Y. (2015). EGCG-mediated autophagy flux has a neuroprotection effect via a class III histone deacetylase in primary neuron cells. Oncotarget, 6(12), 9701-9717. doi:10.18632/oncotarget.3832

Liu, D., Perkins, J. T., & Hennig, B. (2016). EGCG prevents PCB-126-induced endothelial cell inflammation via epigenetic modifications of NF-kappaB target genes in human endothelial cells. J Nutr Biochem, 28, 164-170. doi:10.1016/j.jnutbio.2015.10.003

Liu, Z., Liu, D., Cheng, J., Mei, S., Fu, Y., Lai, W., . . . Lynch, B. S. (2017). Lipid-soluble green tea extract: Genotoxicity and subchronic toxicity studies. Regul Toxicol Pharmacol, 86, 366-373. doi:10.1016/j.yrtph.2017.04.004

Lorenzo, J. M., Mousavi Khaneghah, A., Gavahian, M., Marszalek, K., Es, I., Munekata, P. E. S., . . . Barba, F. J. (2019). Understanding the potential benefits of thyme and its derived products for food industry and consumer health: From extraction of value-added compounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities. Crit Rev Food Sci Nutr, 59(18), 2879-2895. doi:10.1080/10408398.2018.1477730

Manach, C., Scalbert, A., Morand, C., Remesy, C., & Jimenez, L. (2004). Polyphenols: food sources and bioavailability. Am J Clin Nutr, 79(5), 727-747. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15113710

Mandel, S., Amit, T., Reznichenko, L., Weinreb, O., & Youdim, M. B. (2006). Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol.Nutr.Food Res., 50(2), 229-234. Retrieved from PM:16470637

Mani, S., Sekar, S., Barathidasan, R., Manivasagam, T., Thenmozhi, A. J., Sevanan, M., . . . Sakharkar, M. K. (2018). Naringenin Decreases alpha-Synuclein Expression and Neuroinflammation in MPTP-Induced Parkinson's Disease Model in Mice. Neurotox Res, 33(3), 656-670. doi:10.1007/s12640-018-9869-3

Marranzano, M., Rosa, R. L., Malaguarnera, M., Palmeri, R., Tessitori, M., & Barbera, A. C. (2018). Polyphenols: Plant Sources and Food Industry Applications. Curr Pharm Des, 24(35), 4125-4130. doi:10.2174/1381612824666181106091303

Menard, C., Bastianetto, S., & Quirion, R. (2013). Neuroprotective effects of resveratrol and epigallocatechin gallate polyphenols are mediated by the activation of protein kinase C gamma. Front Cell Neurosci, 7, 281. doi:10.3389/fncel.2013.00281

Mereles, D., & Hunstein, W. (2011). Epigallocatechin-3-gallate (EGCG) for Clinical Trials: More Pitfalls than Promises? International Journal of Molecular Sciences, 12(12), 5592-5603. doi:10.3390/ijms12095592

Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., . . . Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food - an international consensus. Food Funct, 5(6), 1113-1124. doi:10.1039/c3fo60702j

Molino, S., Dossena, M., Buonocore, D., Ferrari, F., Venturini, L., Ricevuti, G., & Verri, M. (2016). Polyphenols in dementia: From molecular basis to clinical trials. Life Sci, 161, 69-77. doi:10.1016/j.lfs.2016.07.021

Mythri, R. B., & Bharath, M. M. (2012). Curcumin: a potential neuroprotective agent in Parkinson's disease. Curr.Pharm.Des, 18(1), 91-99. Retrieved from PM:22211691

Noble, W., & Burns, M. P. (2010). Challenges in neurodegeneration research. Frontiers in Psych., 1(7), 1-2.

Noda, Y., Kaneyuki, T., Mori, A., & Packer, L. (2002). Antioxidant activities of pomegranate fruit extract and its anthocyanidins: delphinidin, cyanidin, and pelargonidin. J.Agric.Food Chem., 50(1), 166-171.

Nones, J., Stipursky, J., Costa, S. L., & Gomes, F. C. (2010). Flavonoids and astrocytes crosstalking: implications for brain development and pathology. Neurochem Res, 35(7), 955-966. doi:10.1007/s11064-010-0144-0

Oliveira, M. R., Nabavi, S. F., Daglia, M., Rastrelli, L., & Nabavi, S. M. (2016). Epigallocatechin gallate and mitochondria-A story of life and death. Pharmacol Res, 104, 70-85. doi:10.1016/j.phrs.2015.12.027

Ono, K., Yoshiike, Y., Takashima, A., Hasegawa, K., Naiki, H., & Yamada, M. (2003). Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer's disease. J.Neurochem., 87(1), 172-181.

Palazzi, L., Bruzzone, E., Bisello, G., Leri, M., Stefani, M., Bucciantini, M., & Polverino de Laureto, P. (2018). Oleuropein aglycone stabilizes the monomeric alpha-synuclein and favours the growth of non-toxic aggregates. Sci Rep, 8(1), 8337. doi:10.1038/s41598-018-26645-5

Pan, P. T., Lin, H. Y., Chuang, C. W., Wang, P. K., Wan, H. C., Lee, M. C., & Kao, M. C. (2019). Resveratrol alleviates nuclear factor-kappaB-mediated neuroinflammation in vasculitic peripheral neuropathy induced by ischemia-reperfusion via suppressing endoplasmic reticulum stress. Clin Exp Pharmacol Physiol. doi:10.1111/1440-1681.13105

Pandareesh, M. D., Mythri, R. B., & Srinivas Bharath, M. M. (2015). Bioavailability of dietary polyphenols: Factors contributing to their clinical application in CNS diseases. Neurochem Int, 89, 198-208. doi:10.1016/j.neuint.2015.07.003

Parikh, A., Kathawala, K., Li, J., Chen, C., Shan, Z., Cao, X., . . . Garg, S. (2018). Curcumin-loaded self-nanomicellizing solid dispersion system: part II: in vivo safety and efficacy assessment against behavior deficit in Alzheimer disease. Drug Deliv Transl Res, 8(5), 1406-1420. doi:10.1007/s13346-018-0570-0

Perez-Jimenez, J., Neveu, V., Vos, F., & Scalbert, A. (2010). Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur J Clin Nutr, 64 Suppl 3, S112-120. doi:10.1038/ejcn.2010.221

Pogacnik, L., Pirc, K., Palmela, I., Skrt, M., Kim, K. S., Brites, D., . . . Silva, R. F. (2016). Potential for brain accessibility and analysis of stability of selected flavonoids in relation to neuroprotection in vitro. Brain Res, 1651, 17-26. doi:10.1016/j.brainres.2016.09.020

Poti, F., Santi, D., Spaggiari, G., Zimetti, F., & Zanotti, I. (2019). Polyphenol Health Effects on Cardiovascular and Neurodegenerative Disorders: A Review and Meta-Analysis. Int J Mol Sci, 20(2). doi:10.3390/ijms20020351

Rasheed, N. O. A., Ahmed, L. A., Abdallah, D. M., & El-Sayeh, B. M. (2018). Paradoxical cardiotoxicity of intraperitoneally-injected epigallocatechin gallate preparation in diabetic mice. Sci Rep, 8(1), 7880. doi:10.1038/s41598-018-25901-y

Rezai-Zadeh, K., Arendash, G. W., Hou, H., Fernandez, F., Jensen, M., Runfeldt, M., . . . Tan, J. (2008). Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res, 1214, 177-187. doi:10.1016/j.brainres.2008.02.107

Sangeetha, M. K., Vallabi, D. E., Sali, V. K., Thanka, J., & Vasanthi, H. R. (2013). Sub-acute toxicity profile of a modified resveratrol supplement. Food Chem Toxicol, 59, 492-500. doi:10.1016/j.fct.2013.06.037

Schimidt, H. L., Garcia, A., Martins, A., Mello-Carpes, P. B., & Carpes, F. P. (2017). Green tea supplementation produces better neuroprotective effects than red and black tea in Alzheimer-like rat model. Food Res Int, 100(Pt 1), 442-448. doi:10.1016/j.foodres.2017.07.026

Schraufstatter, E., & Bernt, H. (1949). Antibacterial action of curcumin and related compounds. Nature, 164(4167), 456. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18140450

Shen, C. L., Brackee, G., Song, X., Tomison, M. D., Finckbone, V., Mitchell, K. T., . . . Wang, J. S. (2017). Safety Evaluation of Green Tea Polyphenols Consumption in Middle-aged Ovariectomized Rat Model. J Food Sci, 82(9), 2192-2205. doi:10.1111/1750-3841.13745

Solanki, I., Parihar, P., Mansuri, M. L., & Parihar, M. S. (2015). Flavonoid-Based Therapies in the Early Management of Neurodegenerative Diseases. Adv Nutr, 6(1), 64-72. doi:10.3945/an.114.007500

Sun, A. Y., Simonyi, A., & Sun, G. Y. (2002). The "French Paradox" and beyond: neuroprotective effects of polyphenols. Free Radic.Biol.Med., 32(4), 314-318.

Szwajgier, D., Borowiec, K., & Pustelniak, K. (2017). The Neuroprotective Effects of Phenolic Acids: Molecular Mechanism of Action. Nutrients, 9(5). doi:10.3390/nu9050477

Tarawneh, R., & Galvin, J. E. (2010). Potential future neuroprotective therapies for neurodegenerative disorders and stroke. Clin.Geriatr.Med., 26(1), 125-147. Retrieved from PM:20176298

Tili, E., & Michaille, J. J. (2016). Promiscuous Effects of Some Phenolic Natural Products on Inflammation at Least in Part Arise from Their Ability to Modulate the Expression of Global Regulators, Namely microRNAs. Molecules, 21(9). doi:10.3390/molecules21091263

Tresserra-Rimbau, A., Lamuela-Raventos, R. M., & Moreno, J. J. (2018). Polyphenols, food and pharma. Current knowledge and directions for future research. Biochem Pharmacol, 156, 186-195. doi:10.1016/j.bcp.2018.07.050

Tresserra-Rimbau, A., Medina-Remon, A., Perez-Jimenez, J., Martinez-Gonzalez, M. A., Covas, M. I., Corella, D., . . . Lamuela-Raventos, R. M. (2013). Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: the PREDIMED study. Nutr Metab Cardiovasc Dis, 23(10), 953-959. doi:10.1016/j.numecd.2012.10.008

Ullah, H., & Khan, H. (2018). Anti-Parkinson Potential of Silymarin: Mechanistic Insight and Therapeutic Standing. Frontiers in Pharmacology, 9. doi:10.3389/fphar.2018.00422

Ulusoy, H. G., & Sanlier, N. (2019). A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit Rev Food Sci Nutr, 1-14. doi:10.1080/10408398.2019.1683810

Virmani, A., Pinto, L., Binienda, Z., & Ali, S. (2013). Food, nutrigenomics, and neurodegeneration--neuroprotection by what you eat! Mol Neurobiol, 48(2), 353-362. doi:10.1007/s12035-013-8498-3

Vlachojannis, C., Zimmermann, B. F., & Chrubasik-Hausmann, S. (2015). Efficacy and safety of pomegranate medicinal products for cancer. Evid Based Complement Alternat Med, 2015, 258598. doi:10.1155/2015/258598

Wang, D., Meng, J., Xu, K., Xiao, R., Xu, M., Liu, Y., . . . Liu, L. (2012). Evaluation of oral subchronic toxicity of Pu-erh green tea (camellia sinensis var. assamica) extract in Sprague Dawley rats. Journal of Ethnopharmacology, 142(3), 836-844. doi:10.1016/j.jep.2012.06.011

Weinreb, O., Mandel, S., Amit, T., & Youdim, M. B. (2004). Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases. J.Nutr.Biochem., 15(9), 506-516.

West, T., Atzeva, M., & Holtzman, D. M. (2007). Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury. Dev.Neurosci., 29(4-5), 363-372.

Willis, L. M., Freeman, L., Bickford, P. C., Quintero, E. M., Umphlet, C. D., Moore, A. B., . . . Granholm, A. C. (2010). Blueberry supplementation attenuates microglial activation in hippocampal intraocular grafts to aged hosts. Glia, 58(6), 679-690. Retrieved from PM:20014277

Yamamoto, N., Shibata, M., Ishikuro, R., Tanida, M., Taniguchi, Y., Ikeda-Matsuo, Y., & Sobue, K. (2017). Epigallocatechin gallate induces extracellular degradation of amyloid beta-protein by increasing neprilysin secretion from astrocytes through activation of ERK and PI3K pathways. Neuroscience, 362, 70-78. doi:10.1016/j.neuroscience.2017.08.030

Yu, S., Wang, X., He, X., Wang, Y., Gao, S., Ren, L., & Shi, Y. (2016). Curcumin exerts anti-inflammatory and antioxidative properties in 1-methyl-4-phenylpyridinium ion (MPP(+))-stimulated mesencephalic astrocytes by interference with TLR4 and downstream signaling pathway. Cell Stress Chaperones, 21(4), 697-705. doi:10.1007/s12192-016-0695-3

Zafra-Stone, S., Yasmin, T., Bagchi, M., Chatterjee, A., Vinson, J. A., & Bagchi, D. (2007). Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol.Nutr.Food Res., 51(6), 675-683. Retrieved from PM:17533652

Zamora-Ros, R., Knaze, V., Rothwell, J. A., Hemon, B., Moskal, A., Overvad, K., . . . Scalbert, A. (2016). Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Nutr, 55(4), 1359-1375. doi:10.1007/s00394-015-0950-x

Zhang, F., Wang, H., Wu, Q., Lu, Y., Nie, J., Xie, X., & Shi, J. (2013). Resveratrol protects cortical neurons against microglia-mediated neuroinflammation. Phytother Res, 27(3), 344-349. doi:10.1002/ptr.4734

Zhang, T., Zhang, J., Derreumaux, P., & Mu, Y. (2013). Molecular mechanism of the inhibition of EGCG on the Alzheimer Abeta(1-42) dimer. J Phys Chem B, 117(15), 3993-4002. doi:10.1021/jp312573y

Zhang, X., Wu, M., Lu, F., Luo, N., He, Z. P., & Yang, H. (2014). Involvement of alpha7 nAChR signaling cascade in epigallocatechin gallate suppression of beta-amyloid-induced apoptotic cortical neuronal insults. Mol Neurobiol, 49(1), 66-77. doi:10.1007/s12035-013-8491-x

Zhu, M., Han, S., & Fink, A. L. (2013). Oxidized quercetin inhibits alpha-synuclein fibrillization. Biochim Biophys Acta, 1830(4), 2872-2881. doi:10.1016/j.bbagen.2012.12.027




DOI: http://dx.doi.org/10.14720/aas.2020.115.2.1472

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Lea Pogačnik, Rui F.M. Silva

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941