Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of Hyoscyamus niger L. plants with nano-sized titanium dioxide and bulk application

Mansour GHORBANPOUR, Mehrnaz HATAMI, Mahmoud HATAMI

Abstract


 

Application of nanotechnology is now widely distributed overall the life, especially in agricultural systems. This study intended to indicate the impacts of nano-sized titanium dioxide particles (NT) and bulk (BT) on antioxidant enzymes activities including superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT), and variations of two major tropane alkaloids such as hyoscyamine (HYO) and scopolamine (SCO) in Hyoscyamus niger L. Plants were treated with different concentrations of NT and BT (0, 20, 40 and 80 mg l-1). Alkaloids extracted were identified by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analysis. Results showed that SOD activity increased with increasing titanium dioxide concentration in both nano-particles and bulk treated plants. However, the highest and the lowest POX activity were observed in plants exposed to NT at 40 mg l-1 and control, respectively. Generally, all tested enzymes activities were higher in NT treated plants that those of BT except CAT activity at 80 mg l-1. The highest alkaloids content values, HYO: 0.286 g kg-1 and SCO: 0.126 g kg-1, were achieved in plants treated with NT at 80 and 20 mg l-1, respectively. The maximum and minimum plant biomass and subsequently total alkaloids yield were obtained in plants exposed to NT at 40 mg l-1 and controls, respectively. Our results suggest that NT in appropriate level (40 mg l-1) may act as an elicitor for biochemical responses and tropane alkaloids biosynthesis in H. niger plants.

 


Keywords


hyoscyamus niger; alcaloids; antioxidants; particle size; dimensions; crop yield; enzymes; biochemistry

Full Text:

PDF

References


Beauchamp, C., Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 44: 276-287; DOI: 10.1016/0003-2697(71)90370-8

Biener, J., Farfan-Arribas, E., Biener, M., Friend, C.M., Madix, R.J. 2005. Synthesis of TiO2 nanoparticles on the Au (111) surface. J. Chem. Phys. 123:0947051–6; DOI: 10.1063/1.1999607

Bradford , M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Annu. Rev. Bioch. 72: 248-254; DOI: 10.1016/0003-2697(76)90527-3

Castiglione, M.R., Giorgetti, L., Geri, C., Cremonini, R. 2011. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J. Nanopart. Res. 13: 2443–2449; DOI: 10.1007/s11051-010-0135-8

Chandlee, J.M., Scandalios, J.G. 1984. Analysis of variants affecting the catalase development program in maize scutellum. Theor. Appl. Genet. 69: 71–77; DOI: 10.1007/BF00262543

Cuneyt, C., Kudret, K., Birsen, S. 2004. Physical and Physiological Dormancy in Black Henbane (Hyoscyamus niger L.) seeds. Journal of Plant Biology. 47: 391-395; DOI: 10.1007/BF03030556

Debasis, C., Chatterjee, J., Datta, S.K. 2007. Oxidative stress and antioxidant activity as the basis of senescence in chrysanthemum florets. Plant Growth Regul. 53: 107-115; DOI: 10.1007/s10725-007- 9208-9

Flores, H.E., Vivanco, J.M., Loyola-Vargas, V.M. 1999. ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci. 4: 220–226; DOI: 10.1016/S1360-1385(99)01411-9

Hafis, C., Romero-Puertas, M.C., Rio, L.A., Abdelly, C., Sandalio, L.M. 2011. Antioxidative response of Hordeum maritimum L. to potassium deficiency. Acta Physiol Plant. 33: 193–202; DOI: 10.1007/s11738-010-0537-3

Hashimoto, T., Yun, D.J., Yamada, Y. 1993. Production of tropane alkaloids in genetically engineered root cultures. Phytochemistry. 32: 713–718; DOI: 10.1016/S0031-9422(00)95159-8

Hatami, M., Ghorbanpour, M., Defense enzymes activity and biochemical variations of Pelargonium zonale in response to nanosilver particles and dark storage. Turkish Journal of Biology, 2014, vol. 38, pp. 130-139; DOI: 10.3906/biy-1304-64

Hatami, M., Ghorbanpour, M., Salehiarjomand, H. 2014. Nano-anatase TiO2 modulates the germination behavior and seedling vigority of the five commercially important medicinal and aromatic plants. Journal of Biological and Environmental Sciences. 8(22): 53-59

Hruby, M., Cigler, P., Kuzel, S. 2002. Contribution to understanding the mechanism of titanium action in plant. J Plant Nutr. 25: 577–598; DOI: 10.1081/PLN-120003383

Kamada, H., Okamura, N., Satake, M., Harada, H., Shimomura, K. 1986. Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep. 5: 239- 242; DOI: 10.1007/BF00269811

Krishnaraj, C., Jagan, E.G., Ramachandran, R., Abirami, S.M., Mohan, N., Kalaichelvan, P.T. 2012. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem. 47: 651-658; DOI: 10.1016/j.procbio.2012.01.006

Kumar, K.B., Khan, P.A. 1982. Peroxidase and polyphenol oxidase in excised ragi (Eleusine coracana cv. PR 202) leaves during senescence. Ind. J. Exp. Bot. 20: 412-416.

Kurepa, J., Paunesku, T., Vogt, S., Arora, H., Rabatic, B.M., Lu, J.J., Wanzer, M.B., Woloschak, G.E., Smalle, J.A. 2010. Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett. 10: 2296–2302; DOI: 10.1021/nl903518f

Lei, Z., Mingyu, S., Xiao, W., Chao, L., Chunxiang, Q., Liang, C., Hao, H., Xiao-qing, L., Fashui, H. 2008. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res. 121: 69–79; DOI: 10.1007/s12011-007-8028-0

Lu, C.M., Zhang, C.Y., Wen, J.Q., Wu, G.R. 2002. Research on the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci. 21: 68–171.

Mukherjee, M., Mahapatra, A. 2009. Effect of coinage metal nanoparticles and zwitterionic surfactant on reduction of [Co(NH3)5Cl](NO3)2 by iron. Colloid Surface. 350: 1-7; DOI: 10.1016/j.colsurfa.2009.08.021

Oksman, K. 1987. Scopolamine and Hyoscyamine Production by Plants and Cell Cultures of Hyoscymus muticus. PhD thesis, University of Helsinki, Helsinki, Finland,

Priyadarshini, S., Deepesh, B., Zaidi, M.G.H., Pardhasaradhi, P., Khanna, P.K., Arora, S. 2012. Silver Nanoparticle-Mediated Enhancement in Growth and Antioxidant Status of Brassica juncea. Appl Biochem Biotech. 167: 2225- 2233; DOI: 10.1007/s12010-012-9759-8

Scrinis, G., Lyons, K. 2007. The Emerging Nano- Corporate Paradigm: Nanotechnology and the Transformation of Nature, Food and Agri-Food Systems. Int J Soc Agric Food. 15: 22–44.

Yin, L., Cheng, Y., Espinasse, B., Colman, B.P., Auffan, M., Wiesner, M., Rose, J., Liu, J., Bernhardt, E.S. 2011. More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol. 45: 2360-7; DOI: 10.1021/es103995x

Zayed, R., Wink, M. 2004. Induction of tropane alkaloid formation in transformed root cultures of Brugmansia suaveolens (Solanaceae). Z Naturforsch. 59: 863–867.

Zehra, M., Banerjee, S., Naqvi, A.A., Kumar, S. 1998. Variation in Growth and Tropane Alkaloid Production Capability of the Hairy Roots of Hyoscyamus albus, H. muticus and their Somatic Hybrid. Plant Science. 136: 93-99; DOI: 10.1016/S0168-9452(98)00091-0




DOI: http://dx.doi.org/10.14720/aas.2015.105.1.03

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Acta agriculturae Slovenica

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY-NC-ND 4.0 License.

                            


ISSN 1581-9175     eISSN 1854-1941