Aktiviranje aktivnosti antioksidacijskih encimov, biosinteze hiosciamina in skopolamina pri črnem zobniku (Hyoscyamus niger L.) z nano in celokupnimi delci titanovega dioksida

Mansour GHORBANPOUR, Mehrnaz HATAMI, Mahmoud HATAMI

Povzetek


Uporaba nanotehnologije je v svetu danes zelo razširjena v znanostih o življenju, še posebej v kmetijstvu. V raziskavi je bil preučevan vpliv nano delcev (NT) in celukopnih delcev (BT) titanovega dioksida na antioksidacijsko aktivnost encimov kot so superoksid dismutaza (SOD), peroksidaza (POX) in katalaza (CAT) in vpliv tega obravnavanja na variabilnost vsebnosti dveh glavnih tropanskih alkaloidov, hiosciamina (HYO) in skopolamina (SCO) v črnem zobniku (Hyoscyamus niger L.). Rastline so bile tretirane z naslednjimi koncentracijami NT in BT delcev: 0, 20, 40 and 80 mg l-1. Ekstrahirani alkaloidi so bili analizirani in določeni s plinsko kromatografijo (GC) in plinsko kromatografijo povezano z masno spektroskopijo (GC-MS). Rezultati so pokazali, da se je aktivnost SOD povečala pri tretmajih z NT in BT delci z naraščanjem njihove koncentracije. Aktivnost POX pa je bila največja pri rastlinah izpostavljenih NT delcem pri 40 mg l-1 in najmanjša pri kontroli. Nasplošno so bile aktivnosti vseh testiranih encimov večje pri rastlinah tretiranih z NT delci kot pri tretmaju z BT delci, razen aktivnosti CAT pri tretmaju z 80 mg l-1. Največji vsebnosti alkaloidov, HYO: 0.286 g kg-1 in SCO: 0.126 g kg-1, sta bili doseženi pri rastlinah tretiranih z NT delci pri koncentracijah 80 in 20 mg l-1. Največja biomasa in največji pridelek alkaloidov sta bila dosežena pri rastlinah tretiranih z NT pri 40 mg l-1 in najmanjša pri kontroli. Rezultati kažejo, da NT delci v primernih koncentracijah (40 mg l-1) delujejo kot elicitorji za biokemične odzive in biosintezo tropanskih alkaloidov pri črnem zobniku.

Ključne besede


hyoscyamus niger; črni zobnik; tropanski aklaloidi; antioksidacijski encimi; nanodelci; nano TiO2; pridelek

Celotno besedilo:

PDF (English)

Literatura


Beauchamp, C., Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 44: 276-287; DOI: 10.1016/0003-2697(71)90370-8

Biener, J., Farfan-Arribas, E., Biener, M., Friend, C.M., Madix, R.J. 2005. Synthesis of TiO2 nanoparticles on the Au (111) surface. J. Chem. Phys. 123:0947051–6; DOI: 10.1063/1.1999607

Bradford , M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Annu. Rev. Bioch. 72: 248-254; DOI: 10.1016/0003-2697(76)90527-3

Castiglione, M.R., Giorgetti, L., Geri, C., Cremonini, R. 2011. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J. Nanopart. Res. 13: 2443–2449; DOI: 10.1007/s11051-010-0135-8

Chandlee, J.M., Scandalios, J.G. 1984. Analysis of variants affecting the catalase development program in maize scutellum. Theor. Appl. Genet. 69: 71–77; DOI: 10.1007/BF00262543

Cuneyt, C., Kudret, K., Birsen, S. 2004. Physical and Physiological Dormancy in Black Henbane (Hyoscyamus niger L.) seeds. Journal of Plant Biology. 47: 391-395; DOI: 10.1007/BF03030556

Debasis, C., Chatterjee, J., Datta, S.K. 2007. Oxidative stress and antioxidant activity as the basis of senescence in chrysanthemum florets. Plant Growth Regul. 53: 107-115; DOI: 10.1007/s10725-007- 9208-9

Flores, H.E., Vivanco, J.M., Loyola-Vargas, V.M. 1999. ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci. 4: 220–226; DOI: 10.1016/S1360-1385(99)01411-9

Hafis, C., Romero-Puertas, M.C., Rio, L.A., Abdelly, C., Sandalio, L.M. 2011. Antioxidative response of Hordeum maritimum L. to potassium deficiency. Acta Physiol Plant. 33: 193–202; DOI: 10.1007/s11738-010-0537-3

Hashimoto, T., Yun, D.J., Yamada, Y. 1993. Production of tropane alkaloids in genetically engineered root cultures. Phytochemistry. 32: 713–718; DOI: 10.1016/S0031-9422(00)95159-8

Hatami, M., Ghorbanpour, M., Defense enzymes activity and biochemical variations of Pelargonium zonale in response to nanosilver particles and dark storage. Turkish Journal of Biology, 2014, vol. 38, pp. 130-139; DOI: 10.3906/biy-1304-64

Hatami, M., Ghorbanpour, M., Salehiarjomand, H. 2014. Nano-anatase TiO2 modulates the germination behavior and seedling vigority of the five commercially important medicinal and aromatic plants. Journal of Biological and Environmental Sciences. 8(22): 53-59

Hruby, M., Cigler, P., Kuzel, S. 2002. Contribution to understanding the mechanism of titanium action in plant. J Plant Nutr. 25: 577–598; DOI: 10.1081/PLN-120003383

Kamada, H., Okamura, N., Satake, M., Harada, H., Shimomura, K. 1986. Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep. 5: 239- 242; DOI: 10.1007/BF00269811

Krishnaraj, C., Jagan, E.G., Ramachandran, R., Abirami, S.M., Mohan, N., Kalaichelvan, P.T. 2012. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem. 47: 651-658; DOI: 10.1016/j.procbio.2012.01.006

Kumar, K.B., Khan, P.A. 1982. Peroxidase and polyphenol oxidase in excised ragi (Eleusine coracana cv. PR 202) leaves during senescence. Ind. J. Exp. Bot. 20: 412-416.

Kurepa, J., Paunesku, T., Vogt, S., Arora, H., Rabatic, B.M., Lu, J.J., Wanzer, M.B., Woloschak, G.E., Smalle, J.A. 2010. Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett. 10: 2296–2302; DOI: 10.1021/nl903518f

Lei, Z., Mingyu, S., Xiao, W., Chao, L., Chunxiang, Q., Liang, C., Hao, H., Xiao-qing, L., Fashui, H. 2008. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res. 121: 69–79; DOI: 10.1007/s12011-007-8028-0

Lu, C.M., Zhang, C.Y., Wen, J.Q., Wu, G.R. 2002. Research on the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci. 21: 68–171.

Mukherjee, M., Mahapatra, A. 2009. Effect of coinage metal nanoparticles and zwitterionic surfactant on reduction of [Co(NH3)5Cl](NO3)2 by iron. Colloid Surface. 350: 1-7; DOI: 10.1016/j.colsurfa.2009.08.021

Oksman, K. 1987. Scopolamine and Hyoscyamine Production by Plants and Cell Cultures of Hyoscymus muticus. PhD thesis, University of Helsinki, Helsinki, Finland,

Priyadarshini, S., Deepesh, B., Zaidi, M.G.H., Pardhasaradhi, P., Khanna, P.K., Arora, S. 2012. Silver Nanoparticle-Mediated Enhancement in Growth and Antioxidant Status of Brassica juncea. Appl Biochem Biotech. 167: 2225- 2233; DOI: 10.1007/s12010-012-9759-8

Scrinis, G., Lyons, K. 2007. The Emerging Nano- Corporate Paradigm: Nanotechnology and the Transformation of Nature, Food and Agri-Food Systems. Int J Soc Agric Food. 15: 22–44.

Yin, L., Cheng, Y., Espinasse, B., Colman, B.P., Auffan, M., Wiesner, M., Rose, J., Liu, J., Bernhardt, E.S. 2011. More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol. 45: 2360-7; DOI: 10.1021/es103995x

Zayed, R., Wink, M. 2004. Induction of tropane alkaloid formation in transformed root cultures of Brugmansia suaveolens (Solanaceae). Z Naturforsch. 59: 863–867.

Zehra, M., Banerjee, S., Naqvi, A.A., Kumar, S. 1998. Variation in Growth and Tropane Alkaloid Production Capability of the Hairy Roots of Hyoscyamus albus, H. muticus and their Somatic Hybrid. Plant Science. 136: 93-99; DOI: 10.1016/S0168-9452(98)00091-0




DOI: http://dx.doi.org/10.14720/aas.2015.105.1.03

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2015 Acta agriculturae Slovenica

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941