Effects of increased concentrations of chloride on the expression of Mn-SOD enzyme in tobacco

Akbar Norastehnia, Parvaneh SHEYDAEI

Abstract


Chlorine is one of the ions contributing to salinity, despite being an essential micronutrient. Cl- absorption takes place more easily than other nutrients so, the toxic effects of chlorine on the growth has considered rather than its scarcity. Salt stress can ultimately leads to oxidative stress through ROS increase and antioxidant defense system is induced. Therefore, in this study the effect of different concentration of chlorine in irrigation water on the expression of manganese superoxide dismutase was investigated as an indicator of antioxidant defense system activation. Seedlings of tobacco were treated with different concentrations, i.e. 2, 4, 8 mM of CaCl2. Evaluation of Mn-SOD isoenzyme gene expression was performed using RT-qPCR (quantitative reverse transcription PCR) at 0, 3, 6 and 12 hours after treatment. The results showed Mn-SOD gene transcription increased after 3 h treatment with 8 mM CaCl2 and peaked at 6 hours. Based on the observed changes, concentrations of calcium chloride greater than 8 mM in water used for irrigation of tobacco causes stress that results in activation of antioxidant response.


Keywords


chlorine; Mn-SOD; RT-qPCR (quantitative reverse transcription PCR); salt stress

Full Text:

PDF

References


Allakhverdiev, S.I., Sakamoto, A., Nishiyama, Y., Inaba, M., Murata, N. 2000. Ionic and osmotic effects of NaCl-induced in activation of photosystems I and II in Synechococcus sp. Plant Physiol, 123: 1047-1056. DOI: 10.1104/PP.123.3.1047

Alscher, R.G., Hess, J.L. 1993. Antioxidants in higher plants, Boca Raton, FL. CRC press

Baek, K.H., Skinner, D.Z. 2003. Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci. 165: 1221-1227. DOI: 10.1016/S0168-9452(03)00329-7

Basu, U., Good, A., Taylor, G. 2001. Transgenic Brassica napus plants overexpressing aluminium‐induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ. 24: 1278-1269. DOI: 10.1046/J.0016-8025.2001.00783.X

Baum, J.A., Scandalios, J.G. 1981. Isolation and characterization of the cytosolic and mitochondrial superoxide dismutases of maize. Arch Biochem Biophys, 206: 249-264. DOI: 10.1016/0003-9861(81)90089-8

Bowler, C., Montagu, M.V., Inze, D. 1992. Superoxide dismutase and stress tolerance. Annu Rev Plant Biol. 43: 83-116. DOI: 10.1146/annurev.pp.43.060192.000503

Brou, YC., Zézé, A., Diouf, O., Eyletters, M. 2007. Water stress induces overexpression of superoxide dismutases that contribute to the protection of cowpea plants against oxidative stress. Afr J Biotech. 6: 1982-1986.

Esfandiari, E., Shakiba, M.R., Mahboob, S.A., Alyari, H., Toorchi, M. 2007. Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling. J Food Agric Environ. 5: 149.

Faize, M., Burgos, L., Faize, L., Piqueras, A., Nicolas, E., Barba-Espin, G., Clemente-Moreno, M. et al. 2011. Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot. 62: 2599-613. DOI: 10.1093/jxb/erq432. Epub 2011 Jan 14

Fridovich, I. 1986. Superoxide dismutases. Adv Enzymol RAMB, 58: 61-97. DOI: 10.1146/annurev.bi.44.070175.001051

Keunen, E., Remans, T., Bohler, S., Vangronsveld, J., Cuypers, A. 2011. Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci. 12: 6894-6918. DOI: 10.3390/ijms12106894

Koca, H., Bor, M., Özdemir, F., Türkan, İ. 2007. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot. 60: 344-351. DOI: 10.1016/j.envexpbot.2006.12.005

Kozlowski, T.T. 1997. Responses of woody plants to flooding and salinity. Tree Physiol Monograph. 1: 1-29.

Liu, X., Huang, B. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40: 503-510. DOI: 10.1093/treephys/17.7.490

Livak, K.J., Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Method. 25: 402-408. DOI:10.1006/meth.2001.1262

Luis, A., Corpas, F.J., Sandalio, L.M., Palma, J.M., Gómez, M., Barroso, J.B. 2002. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot, 53: 1255-1272. DOI: 10.1093/jexbot/53.372.1255

Mahajan, S., Tuteja, N. 2005. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys, 444: 139-158. DOI:10.1016/j.abb.2005.10.018

Malecka, A., Piechalak, A. Mensinger, A., Hanc, A., Barałkiewicz, D., Tomaszewska, B. 2012. Antioxidative defense system in Pisum sativum roots exposed to heavy metals (Pb, Cu, Cd, Zn). Pol J Environ Stud. 21: 1721-1730.

Norastehnia, A., Niazazari, M., Sarmad, J., Rassa, M. 2014. Effects of chloride salinity on non-enzymatic antioxidant activity, proline and malondialdehyde content in three flue-cured cultivars of tobacco. J. Plant Develop. 21: 75-82.

Palma, J.M., López‐Huertas, E., Corpas, F.J., Sandalio, L.M., Gómez, M., Del Río, L.A. 1998. Peroxisomal manganese superoxide dismutase: purification and properties of the isozyme from pea leaves. Physiol Plantarum. 104: 720-726. DOI: 10.1034/J.1399-3054.1998.1040429.X

Samis, K., Bowley, S., McKersie, B. 2002. Pyramiding Mn‐superoxide dismutase transgenes to improve persistence and biomass production in alfalfa. J Exp Bot. 53: 1343-1350.

Sevilla, F., Lopez-Gorge, J., Gomez, M., Del Rio, L. 1980. Manganese superoxide dismutase from a higher plant. Planta. 150: 153-157. DOI: 10.1007/BF00582359

Shah, K., Nahakpam, S. 2012. Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars. Plant Physiol Biochem. 57: 106-113. DOI: 10.1016/j.plaphy.2012.05.007

Sohani, M, Schenk, P. Schultz, C.J., Schmidt, O. 2009. Phylogenetic and transcriptional analysis of a strictosidine synthase‐like gene family in Arabidopsis thaliana reveals involvement in plant defence responses. Plant Biology. 11: 105-117. DOI:10.1111/J.1438-8677.2008.00139.X

Streller, S., Krömer, S., Wingsle, G., 1994. Isolation and purification of mitochondrial Mn-superoxide dismutase from the gymnosperm Pinus sylvestris L. Plant Cell Physiol. 35: 859-867.

Teakle, N.L. and Tyerman, S.D. 2010. Mechanisms of Cl‐transport contributing to salt tolerance. Plant Cell Environ. 33: 566-589. DOI: 10.1111/J.1365-3040.2009.02060.X

Tuteja, N. 2007. Mechanisms of high salinity tolerance in plants. Method Enzymol. 428: 419-438.

Vyas, D., Kumar, S. 2005. Purification and partial characterization of a low temperature responsive Mn-SOD from tea (Camellia sinensis (L.) O. Kuntze). Biochem Bioph Res Co. 329: 831-838. DOI: 10.1016/j.bbrc.2005.02.051




DOI: http://dx.doi.org/10.14720/aas.2017.109.1.05

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Akbar Norastehnia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941