Influence of ozonised irrigation water on the morphological, bacteriological and sensory characteristics of ‘Saint-Pierre’ tomatoes grown in Algeria

Fouzia BENALI, Nadia RAMDANI

Abstract


This article focuses on the study of the influence of ozonised water irrigation on the morphological, bacteriological and sensory characteristics of ‘Saint-Pierre’ tomatoes grown in Algeria. The results were compared with those irrigated with non-ozonised tap water called control of the same varietal type and grown under the same conditions. The work was carried out on seedlings of tomatoes grown and irrigated with ozonised water at different ozonisation times: 10- seconds, 20- seconds and 30-seconds, corresponding to lot I (tomato at 10-s), lot II (tomato at 20-s) and lot III (tomato at 30-s), respectively. Irrigation with ozonised water does not cause defects in shape, skin or colour of the fruits. They are, distinguished by a round shape, very red in colour, consistent and slightly acidic in taste. With good microbiological stability in accordance with the standard and good organoleptic quality except for the taste character of tomatoes at 30-seconds where a majority of evaluators estimated that ‘they were bland and no big difference for the other criteria analysed. In general, our results showed that the ozonisation of irrigation water improves the growth, development, vigour and yield of tomato plants without altering the marketability of the fruits. This process encourages the use of ozonised water in agriculture since it has a high added value from an environmental and economic point of view and it can be generalized to other crops.


Keywords


ozonised water; irrigation; ‘Saint-Pierre’ tomatoes; morphological; bacteriological and sensory characteristics

Full Text:

PDF

References


Agassounon Djikpo Tchibozo, M., Gomez, S., Tchobo, F., Soumanou, M., & Toukourou, F. (2012). Essai de conservation de la tomate par la technique de la déshydratation imprégnation par immersion (DII). International Journal of Biological and Chemical Sciences, 6(2), 657‑669. https://doi.org/10.4314/ijbcs.v6i2.10

Ali, M. Y., Sina, A. A. I., Khandker, S. S., Neesa, L., Tanvir, E. M., Kabir, A., Khalil, M. I., & Gan, S. H. (2020). Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease : A review. Foods, 10(1), 45. https://doi.org/10.3390/foods10010045

Bhat, N. A., Wani, I. A., & Hamdani, A. M. (2020). Tomato powder and crude lycopene as a source of natural antioxidants in whole wheat flour cookies. Heliyon, 6(1), e03042. https://doi.org/10.1016/j.heliyon.2019.e03042

Cámara, M., Fernández-Ruiz, V., Sánchez-Mata, M.-C., Díaz, L. D., Kardinaal, A., & Lieshout, M. van. (2020). Evidence of antiplatelet aggregation effects from the consumption of tomato products, according to EFSA health claim requirements. Critical Reviews in Food Science and Nutrition, 60(9), 1515‑1522. https://doi.org/10.1080/10408398.2019.1577215

Cheng, H. M., Koutsidis, G., Lodge, J. K., Ashor, A., Siervo, M., & Lara, J. (2017). Tomato and lycopene supplementation and cardiovascular risk factors : A systematic review and meta-analysis. Atherosclerosis, 257, 100‑108. https://doi.org/10.1016/j.atherosclerosis.2017.01.009

FAOSTAT. (s. d.). Consulté 28 mai 2021, à l’adresse http://www.fao.org/faostat/fr/#compare

García-Alonso, F.-J., García-Valverde, V., Navarro-González, I., Martín-Pozuelo, G., González-Barrio, R., & Periago, M. J. (2020). Tomato. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables (p. 255‑271). Elsevier. https://doi.org/10.1016/B978-0-12-812780-3.00015-5

Graham, T., Zhang, P., Woyzbun, E., & Dixon, M. (2011). Response of hydroponic tomato to daily applications of aqueous ozone via drip irrigation. Scientia Horticulturae, 129(3), 464‑471. https://doi.org/10.1016/j.scienta.2011.04.019

Guo, Z., & Wang, Q. (2017). Efficacy of ozonated water against Erwinia carotovora subsp. carotovora in Brassica campestris ssp. chinensis. Ozone: Science & Engineering, 39(2), 127‑136. https://doi.org/10.1080/01919512.2016.1270744

Guo, Z., Wang, Z., Li, Y., & Wang, Q. (2019). Effect of different concentrations of ozone on in vitro plant pathogens development, tomato yield and quality, photosynthetic activity and enzymatic activities. Ozone: Science & Engineering, 41(6), 531‑540. https://doi.org/10.1080/01919512.2019.1591268

Güzel-Seydim, Z., Bever Jr, P. I., & Greene, A. K. (2004). Efficacy of ozone to reduce bacterial populations in the presence of food components. Food Microbiology, 21(4), 475‑479. https://doi.org/10.1016/j.fm.2003.10.001

Heß, S., & Gallert, C. (2015). Sensitivity of antibiotic resistant and antibiotic susceptible Escherichia coli, Enterococcus and Staphylococcus strains against ozone. Journal of water and health, 13(4), 1020‑1028. https://doi.org/10.2166/wh.2015.291

Horvitz, S., & Cantalejo, M. (2014). Application of ozone for the postharvest treatment of fruits and vegetables. Critical reviews in food science and nutrition, 54(3), 312‑339. https://doi.org/10.1080/10408398.2011.584353

Inter ministerial decree, Official Journal39. (2017, juillet 2). JOURNAL OFFICIEL DE LA REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE. https://www.joradp.dz/FTP/JO-FRANCAIS/2017/F2017007.pdf

Joseph, H., Nink, E., McCarthy, A., Messer, E., & Cash, S. B. (2017). “The Heirloom tomato is ‘In’. Does it matter how it tastes?” Food, Culture & Society, 20(2), 257‑280. https://doi.org/10.1080/15528014.2017.1305828

Landa Fernández, I. A., Monje-Ramirez, I., & Orta Ledesma de Velásquez, M. T. (2019). Tomato crop improvement using ozone disinfection of irrigation water. Ozone: Science & Engineering, 41(5), 398‑403. https://doi.org/10.1080/01919512.2018.1549474

Martínez-Sánchez, A., & Aguayo, E. (2019). Effect of irrigation with ozonated water on the quality of capsicum seedlings grown in the nursery. Agricultural Water Management, 221, 547‑555. https://doi.org/10.1016/j.agwat.2019.05.027

Mitsugi, F., Abiru, T., Ikegami, T., Ebihara, K., & Nagahama, K. (2017). Treatment of nematode in soil using surface barrier discharge ozone generator. IEEE Transactions on Plasma Science, 45(12), 3076‑3081. https://doi.org/10.1109/TPS.2017.2708706

Nethaji, D. K., Suresh, S., Prasanna, J. E. H., Vijayagopal, V., & Ramesh, G. (2020). Development of mango and tomato paste and it’s physico-chemical characterization. International Journal of Scientific Research in Science, Engineering and Technology, 165‑171. https://doi.org/10.32628/IJSRST207537

Nomades, D. C. (s. d.). Météo en Algérie en 2020. Historique Météo. Consulté 19 juin 2021, à l’adresse https://www.historique-meteo.net/afrique/algerie/2020/

Ohashi-Kaneko, K., Yoshii, M., Isobe, T., Park, J.-S., Kurata, K., & Fujiwara, K. (2009). Nutrient solution prepared with ozonated water does not damage early growth of hydroponically grown tomatoes. Ozone: Science & Engineering, 31(1), 21‑27. https://doi.org/10.1080/01919510802587523

Pandiselvam, R., Mayookha, V. P., Kothakota, A., Sharmila, L., Ramesh, S. V., Bharathi, C. P., Gomathy, K., & Srikanth, V. (2020). Impact of ozone treatment on seed germination – A systematic review. Ozone: Science & Engineering, 42(4), 331‑346. https://doi.org/10.1080/01919512.2019.1673697

Pandiselvam, R., Sunoj, S., Manikantan, M. R., Kothakota, A., & Hebbar, K. B. (2017). Application and kinetics of ozone in food preservation. Ozone: Science & Engineering, 39(2), 115‑126. https://doi.org/10.1080/01919512.2016.1268947

Renaud, V. (2003). Tomate. Tous les legumes courants, rares ou méconnus cultivables sous nos climats. Ulmer. Paris, Ulmer, 135‑137.

Rowles, J. L., Ranard, K. M., Applegate, C. C., Jeon, S., An, R., & Erdman, J. W. (2018). Processed and raw tomato consumption and risk of prostate cancer : A systematic review and dose–response meta-analysis. Prostate Cancer and Prostatic Diseases, 21(3), 319‑336. https://doi.org/10.1038/s41391-017-0005-x

Rozpądek, P., Nosek, M., Ślesak, I., Kunicki, E., Dziurka, M., & Miszalski, Z. (2015). Ozone fumigation increases the abundance of nutrients in Brassica vegetables : Broccoli (Brassica oleracea var. italica) and Chinese cabbage (Brassica pekinensis). European Food Research and Technology, 240(2), 459‑462. https://doi.org/10.1007/s00217-014-2372-z

Saini, R. K., Rengasamy, K. R. R., Mahomoodally, F. M., & Keum, Y.-S. (2020). Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases : An update on epidemiological and mechanistic perspectives. Pharmacological Research, 155, 104730. https://doi.org/10.1016/j.phrs.2020.104730

Siti Fadlilah, Adi Sucipto, & Mohamad Judha. (2020). Cucumber (Cucumis sativus) and tomato (Solanum lycopersicum) juice effective to reduce blood pressure. GSC Biological and Pharmaceutical Sciences, 10(1), 001‑007. https://doi.org/10.30574/gscbps.2020.10.1.0246

Walallawita, U. S., Wolber, F. M., Ziv-Gal, A., Kruger, M. C., & Heyes, J. A. (2020). Potential role of lycopene in the prevention of postmenopausal bone loss : Evidence from molecular to clinical studies. International Journal of Molecular Sciences, 21(19), 7119. https://doi.org/10.3390/ijms21197119

Wu, H., Li, W., Wang, T., Rong, Y., He, Z., Huang, S., Zhang, L., Wu, Z., & Liu, C. (2021). α-tomatine, a novel early-stage autophagy inhibitor, inhibits autophagy to enhance apoptosis via Beclin-1 in Skov3 cells. Fitoterapia, 152, 104911. https://doi.org/10.1016/j.fitote.2021.104911

Yang, T., Yang, X., Wang, X., Wang, Y., & Song, Z. (2013). The role of tomato products and lycopene in the prevention of gastric cancer : A meta-analysis of epidemiologic studies. Medical Hypotheses, 80(4), 383‑388. https://doi.org/10.1016/j.mehy.2013.01.005




DOI: http://dx.doi.org/10.14720/aas.2021.117.4.2256

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Fouzia BENALI, Nadia RAMDANI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941