Identifikacija genov na ravni celotnega genoma za kinaze AGC in njihovo izražanje kot odziv na vročinski in hladni stres pri ječmenu

Zohreh HAJIBARAT, Abbas SAIDI

Povzetek


Kinaze AGC so v veliki meri ohranjeni regulatorji različnih celični procesov kot so diferenciacija, proliferacina in rast. Znano je, da imajo pomembne vloge pri stresnih in hormonskih odzivih, vključno s signalizacijo ROS. Kinaze AGC so glavna skupina proteinskih kinaz v rastlinah, ki imajo osrednjo vlogo v razlilčnih fazah rasti rastlin. V tej raziskavi je bilo pri ječmenu na osnovi analize filogenetskih odnosov, genskih struktur, kromosomskih lokacij, analize sintenije in genske ontologije, njihove subcelularne lokalizacije in izražanja genov kinaz AGC identificiranih 28 genov kinaz AGC. Filogenetsko drevo jih je na osnovi organizacije intronov in eksonov porazdelilo v sedem poddružin. Podvojevanje genov in sintenija sta pokazali, da sta imela pri ječmenu tandemsko in bločno podvojevanje odločilno vlogo pri ekspanziji družin genov za kinaze AGC. Analiza kvantitativne reverzne transkripcije PCR v realnem času (qRT-PCR) opravljene za gene kinase HvAGC je pokazala, da so se ti geni v veliki meri izrazili v različnih tkivih korenin, stebla in listov pri sortah Azaran in Jolgeh v razmerah vročinskega in hladnega stresa. Rezultati kromosomske lokalizacije so pokazali, da so bili geni za kinase AGC pri ječmenu locirani na vseh kromosomih, razen na kromosomu 1. Evolucija genoma ječmena je bila preučena z identifikacijo ortolognih in paralognih genov. Prepoznavanje prekrivanj med skupinami ortolognih genov omogoča preučevanje funkcije in razvoja proteinov pri različnih vrstah. Glede na vedenje avtorjev je to prvo podrobnejše poročanje o uporabi kinaz AGC z analizo bioinfomatskih pristopov pri ječmenu. Rezulati so odkrili veliki pomen družin genov za kinaze AGC pri ječmenu, kar bo pomembno za izboljšanje sort ječmena pri odzivu na vročinski in hladni stres. Gen HvNDR6.2 bi lahko  uporabili kot molekularni marker odziva pri hladnem stresu v koreninah, steblu in listih.


Ključne besede


AGC proteinske kinaze; nabor proteinov; sintenija; podvajanje genov

Celotno besedilo:

PDF (English)

Literatura


Altenhoff, A.M. & Dessimoz, C. (2009). Phylogenetic and functional assessment of orthologs inference projects and methods. PLoS Computational Biology, 5(1), p.e1000262. https://doi.org/10.1371/journal.pcbi.1000262

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2

Bradley D. & Beltrao, P. (2019). Evolution of protein kinase substrate recognition at the active site. PLoS Biology, 17(6), p.e3000341. https://doi.org/10.1371/journal.pbio.3000341

Cheung, J., Estivill, X., Khaja, R., MacDonald, J.R., Lau, K., Tsui, L.C. & Scherer, S.W. (2003). Genome-wide detection of segmental duplications and potential assembly errors in the human genome sequence. Genome Biology, 4(4), 1-10. https://doi.org/10.1186/gb-2003-4-4-r25

Christensen, S.K., Dagenais, N., Chory, J. & Weigel, D. (2000). Regulation of auxin response by the protein kinase PINOID. Cell, 100(4), 469-478. https://doi.org/10.1016/S0092-8674(00)80682-0

Dhonukshe, P., Huang, F., Galvan-Ampudia, C.S., Mähönen, A.P., Kleine-Vehn, J., Xu, J., Quint, A., Prasad, K., Friml, J., Scheres, B. & Offringa, R. (2010). Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS (N/S) motifs to direct apical PIN recycling. Development, 137(19), 3245-3255. https://doi.org/10.1242/dev.052456

Galván-Ampudia, C.S. & Offringa, R. (2007) Plant evolution: AGC kinases tell the auxin tale. Trends in Plant Science, 12(12), 541-547. https://doi.org/10.1016/j.tplants.2007.10.004

Hergovich, A. (2016). The roles of NDR protein kinases in hippo signalling. Genes, 7(5), 21. https://doi.org/10.3390/genes7050021

Huang, F., Kemel Zago, M., Abas, L., van Marion, A., Galván-Ampudia, C.S. & Offringa, R. (2010). Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. The Plant Cell, 22(4), 1129-1142. https://doi.org/10.1105/tpc.109.072678

Kong, W., Tan, S., Zhao, Q., Lin, D.L., Xu, Z.H., Friml, J. & Xue, H.W. (2021). mRNA surveillance complex PELOTA–HBS1 regulates phosphoinositide-dependent protein kinase1 and plant growth. Plant Physiology, 186(4), 2003-2020. https://doi.org/10.1093/plphys/kiab199

Krupnick, J.G. & Benovic, J.L. (1998). The role of receptor kinases and arrestins in G protein–coupled receptor regulation. Annual Review of Pharmacology and Toxicology, 38(1), 289-319. https://doi.org/10.1146/annurev.pharmtox.38.1.289

Kyoko, K., Ohno, S., Serji, M., Ichiro, Y. & Koichi, S. (1989) A novel yeast gene coding for a putative protein kinase. Gene, 76(1), 177-180. https://doi.org/10.1016/0378-1119(89)90021-8

Oyama, T., Shimura, Y. & Okada, K. (2002). The IRE gene encodes a protein kinase homologue and modulates root hair growth in Arabidopsis. The Plant Journal, 30(3), 289-299. https://doi.org/10.1046/j.1365-313X.2002.01290.x

Petersen, L.N., Ingle, R.A., Knight, M.R. & Denby, K.J. (2009). OXI1 protein kinase is required for plant immunity against Pseudomonas syringae in Arabidopsis. Journal of Experimental Botany, 60(13), 3727-3735. https://doi.org/10.1093/jxb/erp219

Pislariu, C.I. & Dickstein, R. (2007). An IRE-like AGC kinase gene, MtIRE, has unique expression in the invasion zone of developing root nodules in Medicago truncatula. Plant Physiology, 144(2), 682-694. https://doi.org/10.1104/pp.106.092494

Rentel, M.C., Lecourieux, D., Ouaked, F., Usher, S.L., Petersen, L., Okamoto, H., Knight, H., Peck, S.C., Grierson, C.S., Hirt, H. & Knight, M.R. (2004). OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427(6977), 858-861. https://doi.org/10.1038/nature02353

Robert, H.S. & Offringa, R. (2008). Regulation of auxin transport polarity by AGC kinases. Current Opinion in Plant Biology, 11(5),495-502. https://doi.org/10.1016/j.pbi.2008.06.004

Saidi, A. & Hajibarat, Z. (2020a). Computational study of environmental stress-related transcription factor binding sites in the promoter regions of maize auxin response factor (ARF) gene family. Notulae Scientia Biologicae, 12(3), 646-657. https://doi.org/10.15835/nsb12310823

Saidi, A., Hajibarat, Z. & Hajibarat, Z. (2020b). Identification of responsive genes and analysis of genes with bacterial-inducible cis-regulatory elements in the promoter regions in Oryza sativa L.. Acta agriculturae Slovenica, 116(1), 115-123. https://doi.org/10.14720/aas.2020.116.1.1035

Saidi, A., Hajibarat, Z. & Hajibarat, Z. (2021a). Phylogeny, gene structure and GATA genes expression in different tissues of Solanaceae species. Biocatalysis and Agricultural Biotechnology,102015. https://doi.org/10.1016/j.bcab.2021.102015

Saidi, A., Hajibarat, Z. & Ahmadikhah, A. (2021b). Computational analysis of responsive transcription factors involved in drought and salt stress in rice. Journal of Applied Biotechnology Reports, 8(4), 406-413. doi:10.30491/jabr.2020.243913.1272

Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., Selbig, J., Müller, L.A., Rhee, S.Y. & Stitt, M. (2004). MAPMAN: a user‐driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal, 37(6), 914-939. https://doi.org/10.1111/j.1365-313X.2004.02016.x

Toda, T., Cameron, S., Sass, P. & Wigler, M. (1988). SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes & Development, 2(5), 517-527. https://doi.org/10.1101/gad.2.5.517

Voorrips, R.E. (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93(1), 77-78. https://doi.org/10.1093/jhered/93.1.77

Wang, L., Yin, H., Qian, Q., Yang, J., Huang, C., Hu, X. & Luo, D. (2009). NECK LEAF 1, a GATA type transcription factor, modulates organogenesis by regulating the expression of multiple regulatory genes during reproductive development in rice. Cell Research, 19(5), 598-611. https://doi.org/10.1038/cr.2009.36

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L. & Lepore, R. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427

Xue, Y.J., Tao, L. & Yang, Z.M. (2008). Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. Journal of Agricultural and Food Chemistry, 56(20), 9676-9684. https://doi.org/10.1021/jf802001v

Yang, S., Zhang, X., Yue, J.X., Tian, D. & Chen, J.Q. (2008). Recent duplications dominate NBS-encoding gene expansion in two woody species. Molecular Genetics and Genomics, 280(3), 187-198. https://doi.org/10.1007/s00438-008-0355-0

Zhang, Y. & Friml, J. (2020). Auxin guides roots to avoid obstacles during gravitropic growth. The New Phytologist, 225(3), 1049. https://doi.org/10.1111/nph.16203

Zhou, P.M., Liang, Y., Mei, J., Liao, H.Z., Wang, P., Hu, K., Chen, L.Q., Zhang, X.Q. & Ye, D. (2021). The Arabidopsis AGC kinases NDR2/4/5 interact with MOB1A/1B and play important roles in pollen development and germination. The Plant Journal, 105(4), 1035-1052. https://doi.org/10.1111/tpj.15085

Zhu, X., Yang, K., Wei, X., Zhang, Q., Rong, W., Du, L., Ye, X., Qi, L. & Zhang, Z. (2015). The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis. Journal of Experimental Botany, 66(21), 6591-6603. https://doi.org/10.1093/jxb/erv367




DOI: http://dx.doi.org/10.14720/aas.2022.118.3.2589

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2022 Zohreh HAJIBARAT, Abbas SAIDI

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941