Efficacy of Bacillus subtilis (Ehrenberg1835) Cohn1872, in suppressing Fusarium oxysporum Schlecht. emend. Snyder & Hansen, the causal agent of root rot of date palm offshoots (Phoenix dactylifera L.) in Iraq

Naji Salim JASSIM, Muntaha Abd. ATI

Abstract


Date palm root rot disease is one of the most important diseases of date palms and offshoots. It is caused by many soil-borne pathogenic fungi. Pathogenicity assays of the isolated fungi showed that the major causative agents of root rot disease in date palm plantlets were Fusarium oxysporum Schlecht. emend. Snyder & Hansen, F. proliferatum (Matsush.) Nirenberg ex Gerlach & Nirenberg S1, F. proliferatum S2, Gibberella fujikuroi (Sawada) Wollenw., and Rhizoctonia solani J.G. Kühn. The most virulent fungus was F. oxysporum with a severity index of 82.16 % of root rot, while R. solani was the least harmful with a disease severity rate of 12.42 %. In laboratory tests, Bacillus subtilis reduced the radial mycelial growth of F. oxysporum on PDA medium by 86.6 %. The application of B. subtilis in combination with F. oxysporum substantially inhibited the severity of root rot disease relative to plantlets treated with only F. oxysporum. In addition, B. subtilis application in the presence or absence of F. oxysporum improved the plant physiology of plantlets, including total chlorophyll, total carotenoid, antioxidant enzyme levels (catalase and peroxidase), and total proline content.


Keywords


B. subtilis; date palm; F. oxysporum; plant physiology

Full Text:

PDF

References


Abdou, E., Abd-Alla, H.M.& Galal, A.A. (2003). Survey of sesame root rot and wilt disease in Minia and their possible control by ascorbic and salicylic acids. Assuit Journal of Agricultural Sciences, 32,135–152.

Ahmed, F.A. (2018). Management of date palm root rot diseases by using some biological control agents under organic farming system. Novel Research in Microbiology Journal, 2(2), 37–47. https://doi.org/10.21608/NRMJ.2018.6619

Akarm, W. & Anjum, T. (2011). Quantitative changes in defense system of tomato induced by two strains of Bacillus against Fusarium wilt. Indian Journal of Fundamental and Applied Life Sciences, 1(3), 7–13. https://www.researchgate.net/publication/266200032

Al-Ani, R.A., Adhab, M.A., Mahdi, M.H. & Abood, H.M. (2012). Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina. Plant Protection Sciences, 48(4), 149–155. https://doi.org/10.17221/16/2012-PPS

Alwahshi. K.J., Saeed, E. I Sham, A., lblooshi, A.A., Alblooshi, M.M., El-Tarabily, K.A., & AbuQamar, S.F. (2019). Molecular identification and disease management of date palm sudden decline syndrome in the United Arab Emirates. International Journal of Molecular Sciences, 20, 923. https://doi.org/10.3390/ijms20040923

Arafat, K.H., Mohamad, A.M. & Elsharabasy, S. (2012). Biological control of date palm root-rots diseases using Egyptian isolates of Streptomyces. Research Journal of Agriculture and Biological Sciences, 8(2), 224–230.

Asada, K. (1999).The water-water cycle in chloroplast scavenging of active oxygen and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601–639. https://doi.org/10.1146/annurev.arplant.50.1.601

Baraka, M.A., Radwan, F.A. & Arafat, K.H. (2011). Survey and identification of major fungi causing root rot on date palm and their relative importance in Egypt. Journal of Biological Chemistry and Environmental Science, 6(2), 319–337. www.acepsag.org

Bashan, B., Levy, R., Cojocaru, M. & Levy, Y. (1995). Purification and structural determination of a phytotoxic substance rom Exserohilum turcicum. Physiological and Molecular of Plant Pathology, 47(4), 225–235. https://doi.org/10.1006/pmpp.1995.1054

Bates, L.S., Waldern, R.P. & Teara, L.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205–207. https://doi.org/10.12691/wjar-2-2-2

Bhusal, B. & Mmbaga, M.T. (2020). Biological control of Phytophthora blight and growth promotion in Bacillus species. Biological Control, 150. https://doi.org/10.1016/j.biocontrol.2020.104373

Cao, Y., Zhang, Z.H., Ling, N., Yuan, Y.J., Zheng, X.Y., Shen, B.A. & Shen, Q.R. (2012). Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biological and Fertility of Soils, 47, 495–506. https://doi.org/10.1007/s00374-011-0556-2

Caron, J., Laverdière, L., Thibodeauand, P.O. & Bélanger, R.R. (2002). Use of an indigenous strain of Trichoderma harzianum against five plant pathogens on greenhouse cucumber and tomato in Québec. Phytoprotection, 83(2), 73–87. https://doi.org/10.7202/706230ar

Cazorla, F., Romero, D., Perez- Garcia, A., Lugtenberg, B., Vicente, A.D., Bkoennberg, G. (2007). Isolation and characterization of antagonistic Bacillus subtilis strains from the vocado rhizplane displaying biocontrol activity. Journal Applied of Microbiology, 103(5), 1950–1959. https://doi.org/10.1111/j.1365-2672.2007.03433.x

Chen, K., Tian, Z., He, H., Long, C. & Jiang, F. (2020). Bacillus species as potential biocontrol agents against citrus diseases. Biological control, 151. https://doi.org/10.1016/j.biocontrol.2020.104419

Collin, D.P. & Jacobsen, B.J. (2003). Optimizing a Bacillus subtilis isolate for biological control of sugar beet Cercospora leaf spot. Biological Control, 26(2), 153–161. https://doi.org/10.1016/S1049-9644(02)00132-9

El Modafar, C. & El Boustani, E. (2000). Relationship between cell wall susceptibility to cellulose and pectinases of Fusarium oxysporum and susceptibility of date palm cultivars. Biologia Plantarum, 43(4), 571–576. https://doi.org/10.1023/A:1002886104333

El-Morsi, M.E.A., Abo Rehab, M.E.A., El-Morsy, S.A. (2012). Surviey and control trials of root rot/wilt of date palm offshoots in New Valley Governorate. Egyptian Journal of Agricultural Researches, 90, 1403–1414. https://doi.org/10.21608/ejar.2012.163415

El-Morsi, M.E.A., Kamhawy, M.A.M. & Sallam, M.A.A. (2009). Effectiveness of some organic compounds in controlling pathogenic fungi associated with roots of date palm offshoots in New Valley Governorate, Egypt. Assiut Journal of Agriculture Sciences, 40, 137–150.

Gerhardson, B. (2002). Biological substitutes for pesticides. Trends Biotechnology, 20, 338–343. https://doi.org/10.1016/S0167-7799(02)02021-8

Gravel, V., Martinez, C., Antoun, H. & Tweddell, R.J. (2004). Evaluation of antagonistic microorganism as biological control agents (BCAs) of root rot (Pythium ultimum) of greenhouse tomatoes in rock wool. Canadian Journal of Plant Pathology, 26, 152–159.

Hashem A., Elsayed F.A.A., Alqarawi A.A., Radhakrishnan R. & Kumar A. (2017). Plant defense approach of Bacillus subtilis (BERA71) against Macrophomina phaseolina (Tassi) Goidin mung bean. Journal of Plant Interactions, 12(1), 390–401. https://doi.org/10.1080/17429145.2017.1373871

Hashem, A.T., Tabassum, B. & Abd-Allsh, E.F. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26, 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004

Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J. & Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signal Behaves, 7, 1456–1466. https://doi.org/10.4161/psb.21949

Hernandez, H., Espino, J., Rodriguez, R.A., Manuel, J., Perez, S., Ana, P.S. & et al. (2010). Survey of diseases caused by Fuasarium spp. on palm trees in the Canary Islands. Phytopathology Mediterranea, 49, 84–88.

Huang, C.H., Roberts, P.D. & Datnoff, L.E. (2012). Fusarium diseases of tomato. In: Gullin Katan J and Garibaldi. A. (eds.). Fusarium wilts of greenhouse vegetable and ornamental crops. American Phytopathology and Society St. Paul, 145–158. https://doi.org/10.1094/9780890544822.018

Jassim, N.S. (2015).The efficiency of Bacillus subtilis and salicylic acid on the growth and pathogenecity of Fusarium moniliforme Sheldon the causal agent of date palm offshoot decline. Basra Journal of Date Palm Research, 14(2), 55–75 (Abstract).

Jassim, N.S., Ati, M.A. & Alhamd, A.D. (2020). Effect of biological agent Bacillus subtilis on chemical composition and antioxidant enzymes of date palm (Phoenix dactylifera L) under salts tress. Biochemical and Cellular Archive, 20(1), 1371–1380.

Kara, M. & Mishra, D. (1976). Catalase, peroxidase, polyphenyl oxidase activities during rice leaf senescence. Plant Physiology, 57, 315–319. https://doi.org/10.1104/pp.57.2.315

Khazaal, F.A-K. (2019). Isolation and identification of fungi associated with sudden decline disease on date palm trees (Phoenix dactylifera L). in Basrah/Iraq. M. Sc. Thesis, Biology Department, University of Basrah, Iraq.

Kumar, K.V.K., Yellareddygari, S.K., Reddy, M.S., Kloepper, J.W., Lawrence, K.S., Zhou, X.G., et.al. (2012). Efficacy of Bacillus subtilis MBI 600 against sheath blight caused by Rhizoctonia solani and on growth and yield of rice. Rice Sciences, 19(1), 55–63. https://doi.org/10.1016/S1672-6308(12)60021-3

Li, S., Zhang, N., Zhang, Z., Luo, J., Shen, B., Zhang, R. & Shen, Q. (2013). Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biology and Fertility of Soils, 49, 295–303. https://doi.org/10.1007/s00374-012-0718-x

Liu, L., Kloepper, J.W. & Tuzun, S. (1995). Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology, 85, 695–698. https://doi.org/10.1094/Phyto-85-695

Luck, H. (1974). Catalase, In: Bregmeyer HU, editor, Methods of enzymatic analysis, New York, NY: Academic Press, p 885–893. https://doi.org/10.1016/B978-0-12-395630-9.50158-4

Maitlo, W.A., Markhand, G.S., Abul-Soad, A., Lodhi, A.M. & Jatoi M.A. (2013). Chemical control of sudden decline disease of date palm (Phoenix dactylifera L.) in Sindh, Pakistan. Pakistan Journal of Botany, 45, 7–11.

Manhas, R.K. & Kaur, T. (2016). Biocontrol Potential of Streptomyces hydrogenans Strain DH16 toward Alternaria brassicicola to control damping off and black leaf spot of Raphanus sativus. Frontiers in Plant Science, 7, 1869. https://doi.org/10.3389/fpls.2016.01869

Meena, K.R. & Kanwar, S.S. (2015). Lipopeptides as the antifungal and antibacterial agents: Applications in food safety and therapeutics. Hindawi Publishing Corporation BioMed Research International Article ID 473050, 9 pages. https://doi.org/10.1155/2015/473050

Metzner, H., Rau, H. & Senger, H. (1965). Untersuchungen zur Synchronisierbakeit einzelner Pigmentmangel- Mutanten von Chlorella. Planta, 65,186–194. https://doi.org/10.1007/BF00384998

Murkute, A.A., Sharma, S. & Singh, S. K. (2006). Studies on salt stress tolerance of citrus rootstock genotypes with arbascular mycorrhizal fungi. Horticulure Science, 33, 70–76. https://doi.org/10.17221/3742-HORTSCI

Muthomi, J.W., Otieno, P.E., Chemining’wa, G.N., Nderitu, J.H. & Wagacha, J.M. (2007). Effect of legume root rot pathogens and fungicide seed treatment on nodulation and biomass accumulation. Journal of Biological Sciences, 7, 1163–1170. https://doi.org/10.3923/jbs.2007.1163.1170

Rehman, F., Khan, F.A. & Anis, S.B. (2014). Assessment of aphid infestation levels in some cultivars of mustard with varying defensive traits. Achieves Phytopathology and Plant Protection, 47, 1866–1874. https://doi.org/10.1080/03235408.2013.860724

Selvaraj, T. & Chellappan, P. (2006). Arbuscular mycorrhizae: adiverse personality. Journal of Central European Agriculture, 7(2), 349–358.

Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F. & Huang, Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18(6–7), 287–296. https://doi.org/10.1007/s00572-008-0180-7

Shi, Y., Lou, K. & Li, C. (2010). Growth and photosynthetic efficiency promotion of sugar beet (Beta vulgaris L.) by endophytic bacteria. Photosynthesis Research, 105, 5–13. https://doi.org/10.1007/s11120-010-9547-7

Siala, R., Ben Chobba, I., Vallaeys, T., Triki, MA., Jrad, M., et al. (2016). Analysis of the cultivable endophytic bacterial diversity in the Date palm (Phoenix dactylifera L.) and evaluation of its antagonistic potential against pathogenic Fusarium species that cause date palm bayound disease. Journal of Applied and Environmental Microbiology, 4(5), 93–104. doi: 10.12691/jaem-4-5-2.

Thabet, I., Francis, F., de Paw, E., Besbes S., Attia, H., Devanne, C. & Blecker, C. (2010). Charcterisation of proteins from date palm sap (Phoenix dactylifera L.) by a protein approach. Food Chemistry, 123, 765–770. https://doi.org/10.1016/j.foodchem.2010.05.024

Wang, C., Yang, W., Wang, C., Gu, C., Niu, D. & Liu, H. (2012). Induction of drought tolerance in cucumber plants by a consortium of three plant growth promoting rhizobacterium strains. PLoS One, 7, e52565. https://doi.org/10.1371/journal.pone.0052565

Wang, X., Zhao, D., Shen, L., Jing, C. & Zhang, C. (2018). Application and mechanisms of Bacillus subtilis in biological control of plant disease. Role of Rhizospheric. Microbes in Soil, Springer, pp. 225–250. https://doi.org/10.1007/978-981-10-8402-7_9

Wang, T., Liang, Y., Wu, M., Chen, Z., Lin, J. & Yang, I. (2015). Natural products from Bacillus subtilis with antimicrobial properties. Chinese Journal of Chemical Engineering, 23(4), 744–754. https://doi.org/10.1016/j.cjche.2014.05.020

Weintraub, P.G. & Jones, P. (2010). Phytoplasmas: genomes, plant hosts and vectors. Walling ford, UK: CABI. https://doi.org/10.1079/9781845935306.0000

Xie, Z., Li, M., Wang, D., Wang, F., Shen, H., Sun, G.J. et al. (2021). Biocontrol efficacy of Bacillus siamensis LZ88 against brown spot disease of tobacco caused by Alternaria alternata. Biological Control, 154,104508. https://doi.org/10.1016/j.biocontrol.2020.104508

Zaid A. (2002). Date Palm Cultivation. FAO Agricultural Services Bulletin No. 156, Food and Agriculture Organization of the United Nations, Rome.

Zhao, Q., Ran, W., Wang, H., Li, X., Shen, Q., Shen, S. & Xu, Y. (2013). Biocontrol of Fusarium wilt disease in muskmelon with Bacillus subtilis Y-IVI. BioControl, 58, 283–292. https://doi.org/10.1007/s10526-012-9496-5




DOI: http://dx.doi.org/10.14720/aas.2022.118.3.2643

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Naji Salim JASSIM, Muntaha Abd. ATI

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941