In vitro fermentation parameters and VFA production of non-structural carbohydrates in rabbits
Abstract
Keywords
Full Text:
PDF (Slovensko (Slovenian))References
Bai, J., Li, Y., Zhang, W., Fan, M., Qian, H., Zhang, H., …Wang, L. (2021a). Source of gut microbiota determines oat β-glucan degradation and short chain fatty acid-producing pathway. Food Bioscience, 41, 101010. https://doi.org/10.1016/j.fbio.2021.101010
Bai, J., Li, T., Zhang, W., Fan, M., Qian, H., Li, Y., Wang, L. (2021b). Systematic assessment of oat β-glucan catabolism during in vitro digestion and fermentation. Food Chemistry, 348, 129116. https://doi.org/10.1016/j.foodchem.2021.129116
Belenguer, A., Fondevilla, M., Balcells, J., Abecia, L., Lachica, M, Carro, M. D. (2011). Methanogenesis in rabbit caecum as affected by the fermentation pattern - in vitro and in vivo measurements. World Rabbit Science, 19, 75–83. https://doi.org/10.4995/wrs.2011.826
Calabro, S., Nizza, A., Pinna, W., Cutrignelli, M. I., Piccolo, V. (1999). Estimation of digestibility of compound diets for rabbits using the in vitro gas production technique. World Rabbit Science, 7, 197–201. https://doi.org/10.4995/wrs.1999.401
Carabaño, R. Badiola, I., Licois, D., Gidenne, T. (2006). The digestive ecosystem and its control through nutritional or feeding strategies. V: L. Maertens in P. Coudert (ur.), Recent advances in rabbit sciences. (str. 211–227). Melle, ILVO. Pridobljeno s http://world-rabbit-science.com/Documents/Cost848.pdf
Castellini, C., Cardinali, R., Rebollar, P. G., Dal Bosco, A., Jimeno, V., Cossu, M. E. (2007). Feeding fresh chicory (Chicoria intybus) to young rabbits: Performance, development of gastro-intestinal tract and immune functions of appendix and Peyer’s patch. Animal Feed Science and Technology, 134(1–2), 56–65. https://doi.org/10.1016/j.anifeedsci.2006.05.007
De Arcangelis, E., Djurle, S., Andersson, A. A. M., Marconi, E., Messia, M. C., Andersson, R. (2019). Structure analysis of β-glucan in barley and effects of wheat β-glucanase. Journal of Cereal Science, 85, 175–181. https://doi.org/10.1016/j.jcs.2018.12.002
Ferreira, F. N. A., Ferreira, W. M., Inácio, D. F. S., Silva Neta, C. S., Mota, K. C. N., Costa Júnior, M. B., … Caicedo, W. O. (2019). In vitro digestion and fermentation characteristics of tropical ingredients, co-products and by-products with potential use in diets for rabbits. Animal Feed Science and Technology, 252, 1–10. https://doi.org/10.1016/j.anifeedsci.2019.03.011
Fortun-Lamothe, L., Gidenne, T. (2006). Recent advances in the digestive physiology of the growing rabbit. V: L. Maertens in P. Coudert (ur.), Recent advances in rabbit sciences (str. 202–210). Melle, ILVO. Pridobljeno s http://world-rabbit-science.com/Documents/Cost848.pdf
Gidenne, T. (1997). Ceaco-colic digestion in the growing rabbit: impact of nutritional factors and related disturbances. Livestock Production Science, 51, 73–88. https://doi.org/10.1016/S0301-6226(97)00111-5
Gidenne, T., Jehl, N., Segura, M., Michalet-Doreau, B. (2002). Microbial activity in the caecum of the rabbit around weaning: impact of a dietary fibre deficiency and of intake level. Animal Feed Science and Technology, 99, 107–118. https://doi.org/10.1016/S0377-8401(02)00138-4
Gidenne, T., Lebas, F., Licois, D., Garcia, J. (2020). Nutrition and feeding strategy: impacts on health status. V: C. de Blas in J. Wiseman (ur.), Nutrition of the rabbit (str. 193–221), 3rd edition. CAB International. Pridobljeno s https://hal.inrae.fr/hal-02569293/file/2020.Rabbit.Nutr%283rd.ed%29chap10%28nutrition%2Bfeed%2Bhealth%3DTG%29.pdf
Holdeman, L. V., Cato, E. P., Moore, W. E. C. (1977). Ether extraction of volatile fatty acids. V: Anaerobe laboratory manual (str. 1–132), 4th edition. Virginia: Southern Printing Company.
Hughes, S. A., Shewry, P. R., Gibson, G. R., McCleary, B. V., Rastall, R. A. (2008). In vitro fermentation of oat and barley derived b-glucans by human faecal microbiota. FEMS Microbiol. Ecol. 64(3), 482–493. https://doi.org/10.1111/j.1574-6941.2008.00478.x
Jha, R., Rossnagel, B., Pieper, R., Van Kessel, A., Leterme, P. (2010). Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets. Animal, 4(5), 724–731. https://doi.org/10.1017/s1751731109991510
Karppinen, S., Liukkonen, K., Aura, A.-M., Forssell, P., Poutainen, K. (2000). In vitro fermentation of polysaccharides of rye, wheat and oat brans and inulin by human faecal bacteria. Journal of the Science of Food and Agriculture, 80, 1469–1476. https://doi.org/10.1002/1097-0010(200008)80:10<1469::AID-JSFA675>3.0.CO;2-A
Kaur, A., Rose, D. J., Rumpagaporn, P., Patterson, J. A., Hamaker, B. R. (2011). In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using “slowly fermentable” dietary fibers. Journal of Food Science, 76(5), H137–H142. https://doi.org/10.1111/j.1750-3841.2011.02172.x
Kaur, R., Sharma, M., Ji, D., Xu, M., Agyei, D. (2020). Structural features, modification, and functionalities of β-glucan. Fibers, 8(1), 1–30. https://doi.org/10.3390/fib8010001
Kermauner, A., Lavrenčič, A. (2008a). Supplementation of rabbit diet with chestnut wood extract: effect on in vitro gas production from three sources of carbohydrates. V: Proc.: 9th World Rabbit Congress, 2008–06–10/13, Verona, Italy: 683–387. Pridobljeno s http://world-rabbit-science.com/WRSA-Proceedings/Congress-2008-Verona/Papers/N-Kermauner1.pdf
Kermauner, A., Lavrenčič, A. (2008b). Supplementation of rabbit diet with chestnut wood extract: effect on in vitro gas production from two sources of protein. V: Proc. 9th World Rabbit Congress, 2008–06–10/13, Verona, Italy: 689–693. Pridobljeno s http://world-rabbit-science.com/WRSA-Proceedings/Congress-2008-Verona/Papers/N-Kermauner2.pdf
Kermauner, A., Lavrenčič, A. (2010). In vitro fermentation of different commercially available pectins using inoculum from rabbit caecum. World Rabbit Science, 18, 1–7. Pridobljeno s http://ojs.upv.es/index.php/wrs/article/view/671
Kermauner, A., Lavrenčič, A. (2011). In vitro SCFA production in most common rabbit feedstuffs. V: S. Hoy (ur.), 17. Internationale Tagung über Haltung und Krankheiten der Kaninchen, Pelztiere und Heimtiere (str. 126–137). Celle, 11.–12. Mai 2011. Gießen: VVB Laufersweiler Verlag. Pridobljeno s https://www.researchgate.net/publication/360890480_In_vitro_SCFA_production_in_most_common_rabbit_feedstuffs
Kermauner, A., Lavrenčič, A. (2012). The in vitro caecal fermentation of different starch sources in rabbits. V: P. Dovč in N. Petrič (ur.), Acta agriculturae Slovenica, Supplement 3: 20th International Symposium Animal Science days: Livestock production as a technological and social challenge (str. 71–75). Ljubljana: Univerza v Ljubljani, Biotehniška fakulteta. Pridobljeno s http://aas.bf.uni-lj.si/zootehnika/supl/3-2012/PDF/3-2012-71-75.pdf
Kermauner, A., Štruklec, M., Marinšek Logar, M. (1996). Addition of probiotic to feed with different energy and ADF content in rabbits. 2. Effect on microbial metabolism in the caecum. World Rabbit Science, 4, 195–200. https://doi.org/10.4995/wrs.1996.294
Lavrenčič, A. (2007). The effect of rabbit age on in vitro caecal fermentation of starch, pectin, xylan, cellulose, compound feed and its fibre. Animal, 1: 241–248. https://doi.org/10.1017/S1751731107303467
Lavrenčič, A., Stefanon, B., Susmel, P. (1997). An evaluation of the Gompertz model in degradability studies of forage chemical components. Animal Science, 64(3), 423–431. https://doi.org/10.1017/S1357729800016027
Lu, S., Flanagan, B. M., Williams, B. A., Mikkelsen, D., Gidley, M. J. (2020). Cell wall architecture as well as chemical composition determines fermentation of wheat cell walls by a faecal inoculum. Food Hydrocolloids, 107, 105858. https://doi.org/10.1016/j.foodhyd.2020.105858
Lu, S., Williams, B. A., Flanagan, B. M., Yao, H., Mikkelsen, D., Gidley, M. J. (2021). Fermentation outcomes of wheat cell wall related polysaccharides are driven by substrate effects as well as initial faecal inoculum. Food Hydrocolloids, 120, 106978. https://doi.org/10.1016/j.foodhyd.2021.106978
Maertens, L., Aerts, J. M., De Boever, J. (2004). Degradation of dietary oligofructose and inulin in the gastro-intestinal tract of the rabbit and the effects on caecal pH and volatile fatty acids. World Rabbit Science, 12, 235–246. https://doi.org/10.4995/wrs.2004.569
Marounek, M., Brezina, P., Baran, M. (2000). Fermentation of carbohydrates and yield of microbial protein in mixed cultures of rabbit caecal microorganisms. Arch. Anim. Nutr., 53, 241–252. https://doi.org/10.1080/17450390009381950
Marounek, M., Vovk, S. J., Benda, V. (1997). Fermentation patterns in rabbit caecal cultures supplied with plant polysaccharides and lactate. Acta Veterinaria Brno, 67, 9–13. https://doi.org/10.2754/avb199766010009
Menke, K. H., Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 375–386.
Ocasio-Vega, C., Abad-Guamán, R., Delgado, R., Carabaño, R., Carro, M. D., García, J. (2018). In vitro caecal fermentation of carbohydrate-rich feedstuffs in rabbits as affected by substrate pre-digestion and donors’ diet. World Rabbit Science, 26, 15–25. https://doi.org/10.4995/wrs.2018.7854
Pellikaan, W. F., Verdonk, J. M. A. J, Shim, S. B., Vestegen, M. W. A. (2007). Adaptive capacity of faecal microbiota from piglets receiving diets with different types of inulin-type fructans. Livestock Science, 108, 178–181. https://doi.org/10.1016/j.livsci.2007.01.087
Salvador, V., Cherbut, C., Barry, J. L. Bertrand, D., Bonnet, C., Delortlaval, J. (1993). Sugar composition of dietary fibre and short chain fatty acid production during in vitro fermentation of human bacteria. British Journal of Nutrition, 70, 189–197. Pridobljeno s https://www.academia.edu/72576840/Sugar_composition_of_dietary_fibre_and_short_chain_fatty_acid_production_during_in_vitro_fermentation_by_human_bacteria?email_work_card=view-paper&li=5
SAS Institute Inc. (2015). SAS/STAT user’s guide: Statistics. Version 9.4. Cary, NC, USA: SAS Institute Inc.
Slovakova L., Duškova D., Marounek M. (2002). Fermentation of pectin and glucose and activity of pectin-degrading enzymes in the rabbit caecal bacterium Bifidobacterium pseudolongum. Lett. Appl. Microb., 35, 126–130. https://doi.org/10.1046/j.1472-765X.2002.01159.x
Tawfick, M. M., Xie H., Zhao, C., Shao, P., Farag, M. A. (2022). Inulin fructans in diet: Role in gut homeostasis, immunity, health outcomes and potential therapeutics. International Journal of Biological Macromolecules, 208, 948–961. https://doi.org/10.1016/j.ijbiomac.2022.03.218
Venkateswaran, K., Hattori, N., La Duc, M. T., Kern, R. (2003). ATP as a biomarker of viable microorganisms in clean room facilities. Journal of Microbiological Methods, 52, 367–377. https://doi.org/10.1016/S0167-7012(02)00192-6
Villamide, M. J., Carabaño, R., Maertens, L., Pascual, J., Gidenne, T., Falcao-e-Cunha, L., Xiccato, G. (2009). Prediction of the nutritional value of European compound feeds for rabbits by chemical components and in vitro analysis. Animal Feed Science and Technology, 150, 283–294. https://doi.org/10.1016/j.anifeedsci.2008.09.007
Volek, Z., Marounek, M. (2011). Dried chicory root (Cichorium intybus L.) as a natural fructan source in rabbit diet: effects on growth performance, digestion and caecal and carcass traits. World Rabbit Science, 19, 143–150. https://doi.org/10.4995/wrs.2011.850
Volek, Z., Marounek, M., Skrivanova, V. (2007). Effect of a starter diet supplementation with mannanoligosaccharide or inulin on health status, caecal metabolism, digestibility of nutrients and growth of early weaned rabbits. Animal, 1, 523–530. https://doi.org/10.1017/S1751731107685012
Williams, B. A., Bosch, M. W., Boer, H., Verstegen, M. W. A., Tamminga, S. (2005). An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Animal Feed Science and Technology, 123–124, 445–462. https://doi.org/10.1016/j.anifeedsci.2005.04.031
Williams, B. A., Verstegen, M. W. A., Tamminga, S. (2001). Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutrition Research Reviews, 14, 207–227. https://doi.org/10.1079/NRR200127
Yang, H. J., Cao, Y. C., Zhang, D. F. (2010). Caecal fermentation patterns in vitro of glucose, cellobiose, microcrystalline cellulose and NDF separated from alfalfa hay in the adult rabbit. Animal Feed Science and Technology, 162, 149–154. https://doi.org/10.1016/j.anifeedsci.2010.09.008
DOI: http://dx.doi.org/10.14720/aas.2022.118.4.2778
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Andrej Lavrenčič, Ajda Kermauner
This work is licensed under a Creative Commons Attribution 4.0 International License.
Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.
eISSN 1854-1941