The role of small RNA molecules in plant response to pathogen infection



Plants have evolved diverse and complex mechanisms to regulate gene expression. Recently, a new mechanism called RNA interference (RNAi) has been discovered. At the core of RNAi are small non-coding RNAs (sRNAs), 21-24 nucleotides in length, that prevent the translation of transcripts into proteins by binding to complementary sites in transcripts. Because sRNAs are determined by origin, precursor structural properties, and sequence characteristics, they are classified into several classes like microRNAs (miRNAs) and secondary small interfering RNAs (siRNAs), which include tasiRNAs and phasiRNAs. They play important roles in regulating gene expression in a wide range of biological processes and in plant responses to biotic or abiotic stresses. Despite the numerous conserved sRNAs among plant species and the characterization of their function, there is still no comprehensive understanding of their role in plant defense responses against phytopathogens. This review summarizes the current understanding of Verticillium wilt pathogenesis, plant defense mechanisms against phytopathogens, and the biogenesis and roles of miRNAs, tasiRNAs, and phasiRNAs in plant defense responses against fungal pathogens. Further studies on plant sRNAs and their expression in response to various phytopathogens are needed to clearly define their roles. New sequencing approaches, bioinformatic analysis, and prediction of the role of miRNA targets during infection may allow us to develop new forms of plant protection in non-model organisms.


biotic stress; microRNA; Verticillium nonalfalfae; small RNAs


Abdel-Ghany, S. E., and Pilon, M. (2008). MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. Journal of Biological Chemistry, 283(23), 15932-15945.

Axtell, M. J., and Meyers, B. C. (2018). Revisiting criteria for plant microRNA annotation in the era of big data. Plant Cell, 30(2), 272-284. doi:

Bari, R., and Jones, J. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology, 69(4), 473-488. doi:

Chen, P., Lee, B., and Robb, J. (2004). Tolerance to a non-host isolate of Verticillium dahliae in tomato. Physiological and Molecular Plant Pathology, 64(6), 283-291.

Cregeen, S., Radišek, S., Mandelc, S., Turk, B., Štajner, N., Jakše, J., and Javornik, B. (2015). Different gene expressions of resistant and susceptible hop cultivars in response to infection with a highly aggressive strain of Verticillium albo-atrum. Plant Molecular Biology Reporter, 33(3), 689-704. doi:

Cuperus, J. T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R. T., Takeda, A., . . . Carrington, J. C. (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Structural & Molecular Biology, 17(8), 997-1003. doi:

Dezulian, T., Palatnik, J. F., Huson, D., and Weigel, D. (2005). Conservation and divergence of microRNA families in plants. Genome Biology, 6(P13). doi:

Fei, Q. L., Xia, R., and Meyers, B. C. (2013). Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell, 25(7), 2400-2415. doi:

Gayoso, C., Pomar, F., Novo-Uzal, E., Merino, F., and de Ilarduya, O. M. (2010). The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biology, 10.

Guo, H. S., Xie, Q., Fei, J. F., and Chua, N. H. (2005). MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell, 17(5), 1376-1386.

Gupta, O. P., Permar, V., Koundal, V., Singh, U. D., and Praveen, S. (2012). MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection. Molecular Biology Reports, 39(2), 817-824. doi:

Gupta, O. P., Sharma, P., Gupta, R. K., and Sharma, I. (2014). Current status on role of miRNAs during plant-fungus interaction. Physiological and Molecular Plant Pathology, 85, 1-7. doi:

Henderson, I. R., Zhang, X. Y., Lu, C., Johnson, L., Meyers, B. C., Green, P. J., and Jacobsen, S. E. (2006). Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nature Genetics, 38(6), 721-725. doi:

Hrnčič, M. K., Spaninger, E., Košir, I. J., Knez, Z., and Bren, U. (2019). Hop compounds: extraction techniques, chemical analyses, antioxidative, antimicrobial, and anticarcinogenic effects. Nutrients, 11(2), 275, doi: 237 str. doi:

Hu, G., Lei, Y., Liu, J. F., Hao, M. Y., Zhang, Z. N., Tang, Y., . . . Wu, J. H. (2020). The ghr-miR164 and GhNAC100 modulate cotton plant resistance against Verticillium dahlia. Plant Science, 293. doi:

Huang, J. H., Qi, Y. P., Wen, S. X., Guo, P., Chen, X. M., and Chen, L. S. (2016). Illumina microRNA profiles reveal the involvement of miR397a in Citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis. Scientific Reports, 6. doi:

IHGC. (2019). International Hop Growers’ Convention: economic commission - summary reports. Retrieved 22.11.2019, 2019, from

Jia, Y. B., Kong, X. P., Hu, K. Q., Cao, M. Q., Liu, J. J., Ma, C. L., . . . Ding, Z. J. (2020). PIFs coordinate shade avoidance by inhibiting auxin repressor ARF18 and metabolic regulator QQS. New Phytologist, 228(2), 609-621. doi:

Jones-Rhoades, M. W., and Bartel, D. P. (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 14(6), 787-799. doi:

Jones, J. D. G., and Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. doi:

Khraiwesh, B., Zhu, J. K., and Zhu, J. H. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 1819(2), 137-148. doi:

Knepper, C., and Day, B. (2010). From perception to activation: The molecular-genetic and biochemical landscape of disease resistance signaling in plants. The Arabidopsis Book, 8(e0124), 1-17. doi:

Kunej, U., Jakše, J., Radišek, S., and Štajner, N. (2021). Identification and characterization of Verticillium nonalfalfae-responsive microRNAs in the roots of resistant and susceptible hop cultivars. Plants-Basel, 10(9). doi:

Lee, Y., Kim, M., Han, J. J., Yeom, K. H., Lee, S., Baek, S. H., and Kim, V. N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal, 23(20), 4051-4060. doi:

Li, Y., Jeyakumar, J. M. J., Feng, Q., Zhao, Z. X., Fan, J., Khaskheli, M. I., and Wang, W. M. (2019). The roles of rice microRNAs in rice-Magnaporthe oryzae interaction. Phytopathology Research, 1(1). doi:

Li, Y., Lu, Y. G., Shi, Y., Wu, L., Xu, Y. J., Huang, F., . . . Wang, W. M. (2014). Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiology, 164(2), 1077-1092. doi:

Mallory, A. C., Bartel, D. P., and Bartel, B. (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell, 17(5), 1360-1375. doi:

Montgomery, T. A., Howell, M. D., Cuperus, J. T., Li, D. W., Hansen, J. E., Alexander, A. L., . . . Carrington, J. C. (2008). Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell, 133(1), 128-141. doi:

Natarajan, B., Kalsi, H. S., Godbole, P., Malankar, N., Thiagarayaselvam, A., Siddappa, S., . . . Banerjee, A. K. (2018). MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato. Journal of Experimental Botany, 69(8), 2023-2036. doi:

Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., . . . Jones, J. D. G. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 312(5772), 436-439. doi:

Neve, R. A. (1991). Hops. Dordrecht, Netherlands: Springer.

Padmanabhan, M., Cournoyer, P., and Dinesh-Kumar, S. P. (2009). The leucine-rich repeat domain in plant innate immunity: a wealth of possibilities. Cellular Microbiology, 11(2), 191-198. doi:

Progar, V., Jakše, J., Štajner, N., Radišek, S., Javornik, B., and Berne, S. (2017). Comparative transcriptional analysis of hop responses to infection with Verticillium nonalfalfae. Plant Cell Reports, 36(10), 1599-1613. doi:

Quint, M., and Gray, W. M. (2006). Auxin signaling. Current Opinion in Plant Biology, 9(5), 448-453. doi: 10.1016/j.pbi.2006.07.006

Radišek, S., Jakše, J., and Javornik, B. (2004). Development of pathotype-specific SCAR markers for detection of Verticillium albo-atrum isolates from hop. Plant Disease, 88(10), 1115-1122. doi:

Radišek, S., Jakše, J., and Javornik, B. (2006). Genetic variability and virulence among Verticillium albo-atrum isolates from hop. European Journal of Plant Pathology, 116(4), 301-314. doi:

Ren, G. D., Xie, M., Zhang, S. X., Vinovskis, C., Chen, X. M., and Yu, B. (2014). Methylation protects microRNAs from an AGO1-associated activity that uridylates 5’ RNA fragments generated by AGO1 cleavage. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6365-6370. doi:

Saurabh, S., Vidyarthi, A. S., and Prasad, D. (2014). RNA interference: concept to reality in crop improvement. Planta, 239(3), 543-564. doi:

Savary, S., Ficke, A., Aubertot, J. N., and Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4(4), 519-537. doi:

Shen, D., Suhrkamp, I., Wang, Y., Liu, S. Y., Menkhaus, J., Verreet, J. A., . . . Cai, D. G. (2014). Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes. New Phytologist, 204(3), 577-594. doi:

Shivaprasad, P. V., Chen, H. M., Patel, K., Bond, D. M., Santos, B. A. C. M., and Baulcombe, D. C. (2012). A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell, 24(3), 859-874. doi:

Singh, A., Singh, S., Panigrahi, K. C. S., Reski, R., and Sarkar, A. K. (2014). Balanced activity of microRNA166/165 and its target transcripts from the class III homeodomain-leucine zipper family regulates root growth in Arabidopsis thaliana. Plant Cell Reports, 33(6), 945-953. doi:

Song, L., Axtell, M. J., and Fedoroff, N. V. (2010). RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Current Biology, 20(1), 37-41. doi:

Steenackers, B., De Cooman, L., and De Vos, D. (2015). Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: A review. Food Chemistry, 172, 742-756. doi:

Talboys, P. W. (1958a). Association of tylosis and hyperplasia of the xylem with vascular invasion of the hop by Verticillium albo-atrum. Transaction of the British Mycological Society, 41, 249-260. doi:

Talboys, P. W. (1958b). Degradation of cellulose by Verticillium albo-atrum. Transactions of the British Mycological Society, 41(2), 242-248. doi:

Thomma, B. P. H. J., Nurnberger, T., and Joosten, M. H. A. J. (2011). Of PAMPs and effectors: The blurred PTI-ETI dichotomy. Plant Cell, 23(1), 4-15. doi:

Wagner, E. G. H., and Simons, R. W. (1994). Antisense RNA control in bacteria, phages, and plasmids. Annual Review of Microbiology, 48, 713-742. doi:

Wang, D., Pajerowska-Mukhtar, K., Culler, A. H., and Dong, X. N. (2007). Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current Biology, 17(20), 1784-1790. doi:

Wang, J. W., Wang, L. J., Mao, Y. B., Cai, W. J., Xue, H. W., and Chen, X. Y. (2005). Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell, 17(8), 2204-2216. doi:

Wei, T. P., Tang, Y., Jia, P., Zeng, Y. M., Wang, B. T., Wu, P., . . . Wu, J. H. (2021). A cotton lignin biosynthesis gene, GhLAC4, fine-tuned by ghr-miR397 modulates plant resistance against Verticillium dahliae. Frontiers in Plant Science, 12. doi:

Wong, J., Gao, L., Yang, Y., Zhai, J. X., Arikit, S., Yu, Y., . . . Ma, W. B. (2014). Roles of small RNAs in soybean defense against Phytophthora sojae infection. Plant Journal, 79(6), 928-940. doi:

Yadeta, K., and Thomma, B. P. H. J. (2013). The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in Plant Science, 4. doi:

Yang, L., Jue, D. W., Li, W., Zhang, R. J., Chen, M., and Yang, Q. (2013). Identification of MiRNA from eggplant (Solanum melongena L.) by small RNA deep sequencing and their response to Verticillium dahliae Infection. Plos One, 8(8). doi:

Yang, Z. Y., Ebright, Y. W., Yu, B., and Chen, X. M. (2006). HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2 ‘ OH of the 3 ‘ terminal nucleotide. Nucleic Acids Research, 34(2), 667-675. doi:

Yi, H., and Richards, E. J. (2007). A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell, 19(9), 2929-2939. doi:

Yu, L., Guo, R. K., Jiang, Y. Q., Ye, X. H., Yang, Z. H., Meng, Y. J., and Shao, C. G. (2019). Identification of novel phasiRNAs loci on long non-coding RNAs in Arabidopsis thaliana. Genomics, 111(6), 1668-1675. doi:

Zhang, T., Zhao, Y. L., Zhao, J. H., Wang, S., Jin, Y., Chen, Z. Q., . . . Guo, H. S. (2016). Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants, 2(10). doi:

Zhao, J. P., Jiang, X. L., Zhang, B. Y., and Su, X. H. (2012). Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa. Plos One, 7(9). doi:

Zhu, Q. H., Fan, L. J., Liu, Y., Xu, H., Llewellyn, D., and Wilson, I. (2013). miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. Plos One, 8(12). doi:



  • There are currently no refbacks.

Copyright (c) 2022 Urban Kunej, Ester Stajič

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941