Žana Marin, Nataša Štajner


Transposable elements (TE) are stretches of DNA that represent the greatest fraction of genomes, especially in plants. Because of their high copy numbers and ability to mobilize through genome, they are able to influence the phenotypic traits and evolution of plants and also plant adaptation to environmental stress. By genetic and epigenetic mechanisms, they change the gene structure, influence gene expression and create new regulatory networks. The fraction of genome that they represent and the influence they have is variable among species; however they were detected in practically every plant genome researched up to date. Deleterious mutations may be caused by their activity which is also another reason why their expression is tightly regulated by the host organism. Gaining knowledge of TE's mechanisms and research development in the future will allow us to use them, for example for crop improvement purposes, resistance development against diseases and pathogens and suppression of invasive species.


transposable elements, mobile DNA, plant evolution, stress adaptation


Butelli E., Licciardello C., Zhang Y., Liu J., Mackay S., Bailey P., Reforgiato-Recupero G., et al. (2012). Retrotransposons control fruit-specific, cold-dependent accumulation od anthocyanins in blood orange. The Plant Cell, 24, 1242-1255. Doi: 10.1105/tpc.111.095232

Bui Q. T., Grandbastien M.-A. (2012). LTR retrotransposons as controlling elements of genome response to stress? In M.-A. Grandbastien, J. M. Casacuberta (Eds.), Plant transposable elements, Topics in current genetics. (pp. 273-296). Berlin, Heidelberg: Springer. Doi: 10.1007/978-3-642-31842-9_14

Capy P., Gasperi G., Biémont C., Bazin C. (2000). Stress and transposable elements: co-evolution or useful parasites? Heredity, 85, 101-106. Doi: 10.1046/j.1365-2540.2000.00751.x

Casacuberta E., González J. (2013). The impact of transposable elements in environmental adaptation. Molecular Ecology, 22, 1503-1517. Doi: 10.1111/mec.12170

Comfort N. C. (1999). »The real point is control«: the reception of Barbara McClintock's controlling elements. Journal of the History of Biology, 32, 133-162. Doi: 10.1023/A:1004468625863

Contreras B., Vives C., Castells R., Casacuberta J. M. (2015). The impact of transposable elements in the evolution of plant genomes: From selfish elements to keyplayers. In P. Pontarotti (Ed.), Evolutionary biology: Biodiversification from genotype to phenotype. (pp. 93-105). Switzerland, Springer. Doi: 10.1007/978-3-319-19932-0_6

Grandbastien M.-A. (2015). LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochimica et Biophysica Acta, 1849, 403-416. Doi: 10.1016/j.bbagrm.2014.07.017

Kejnovsky E., Hawkins J. S., Feschotte C. (2012). Plant transposable elements: biology and evolution. Plant Genome Diversity, 1, 17-34. Doi: 10.1007/978-3-7091-1130-7_2

Kidwell M. G., Lisch D. R. (2001). Perspective: Transposable elements, parasitic DNA, and genome evolution. Internationa Journal of Organic Evolution, 55, 1-24. Doi: 10.1111/j.0014-3820.2001.tb01268.x

Levin H., Moran J. (2011). Dynamic interactions between transposable elements and their hosts. Nature Reviews, 12, 615-627. Doi: 10.1038/nrg3030

Lisch D. (2013). How important are transposons for plant evolution? Nature Reviews, 14, 49-61. Doi: 10.1038/nrg3374

Mao H., Wang H., Liu S., Li Z., Yang X., Yan J., Li J., et al. (2015). A transposable element in a NAC gene is associated with drought tolerane in maize seedlings. Nature Communications, 6, 1-13. Doi: 10.1038/ncomms9326

McClintock B. (1984). The significance of responses of the genome to challenge. Science, 226, 792-801. Doi: 10.1126/science.15739260

Smith L. M. (2015). Mechanism of transposable element evolution in plants and their effects on gene expression. In O. Pontes, H. Jin (Eds.), Nucelar function in plant transcription, signaling and development (pp. 133-164). New York, Springer. Doi: 10.1007/978-1-4939-2386-1_8

Stapley J. (2015). Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Molecular Ecology, 24, 2241-2252. Doi: 10.1111/mec.13089

Tsuchiya T., Eulgem T. (2013). An alternative polyadenylation mechanism coopted to the Arabidopsis RPP7 gene thorugh intronic retrotransposon domestication. PNAS, 110, E3535-E3543. Doi: 10.1073/pnas.1312545110

Wei L., Cao X. (2016). The effect of transposable elements on phenotypic variation: insights from plants to humans. Science China – Life Sciences, 59, 24-37. Doi: 10.1007/s11427-015-4993-2

Wicker T. (2012). So many repeats and so little time: How to classify transposable elements. In M.-A. Grandbastien, J. M. Casacuberta (Eds.), Plant transposable elements (pp. 1-15). Berlin, Heidelberg: Springer. Doi: 10.1007/978-3-642-31842-9_1

DOI: http://dx.doi.org/10.14720/aas.2016.107.2.21


  • There are currently no refbacks.

Copyright (c) 2016 Žana Marin, Nataša Štajner

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941