Tolerance to Zn toxicity in the halophyte Lepidium latifolium L. and the effect of salt on Zn tolerance and accumulation

Behzad NEZHADASAD-AGHBASH, Tayebeh RADJABIAN, Roghieh HAJIBOLAND

Abstract


Halophytes exhibit a high cross-tolerance to multiple stresses that enable them to survive under harsh environmental conditions. We hypothesized that salt treatment in halophytes improves their tolerance against other stressors. To investigate the salt-mediated heavy metal tolerance in halophytes, Lepidium latifolium (Brassicaceae) was cultivated in the absence or presence of salt (100 mM NaCl) and excess Zn (200 μM ZnSO4), alone or in combination, for four weeks in the hydroponic medium. Salt treatment ameliorated the reduction of photosynthetic pigments in Zn-stressed plants and decreased Zn accumulation in the young leaves. The activity of peroxidase increased by both Zn toxicity and salt treatments; its maximum activity was achieved under the combination of both treatments associated with a significant reduction in malondialdehyde concentration. The activity of polyphenol oxidase increased by Zn stress alone or in combination with salt, accompanied by accumulation of free and cell wall-bound phenolics and enhanced lignin deposition in the leaves. Our results showed a mitigating effect of salt treatment in Zn-stressed plants through the activation of antioxidant defense and accumulation of phenolic compounds including flavonoids. Our results suggest L. latifolium as suitable species for revegetation and rehabilitation of saline soils contaminated with heavy metals.


Keywords


halophytes; Zn toxicity; Lepidium latifolium; antioxidant defense; phenolics; lignin

Full Text:

PDF

References


Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J., & Hernandez, J.A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7, 18. https://doi.org/10.3390/agronomy7010018

Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2009). Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia Plantarum, 53, 243–248. https://doi.org/10.1007/s10535-009-0046-7

Ali, M.B., Singh, N., Shohael, A.M., Hahn, E.J., & Paek, K.Y. (2006). Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Science, 171, 147–154. https://doi.org/10.1016/j.plantsci.2006.03.005

Arbelet-Bonnin, D., Ben-Hamed-Louati, I., Laurenti, P., Abdelly, C., Ben-Hamed, K., & Bouteaum F. (2019). Cakile maritima is a promising model for halophyte studies and a putative cash crop for saline agriculture. Advances in Agronomy, 155, 45–78. https://doi.org/10.1016/bs.agron.2019.01.003

Arvouet-Grand, A., Vennat, B., Pourrat, A., & Legret, P. (1994). Standardization of propolis extract and identification of principal constituents. Journal de Pharmacie de Belgique, 49, 462–468.

Ashraf, M.P., & Harris, P.J. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3–16. https://doi.org/10.1016/j.plantsci.2003.10.024

Balaferj, H., Bogusz, D., Triqui, Z.E., Guedira, A., Bendaou, N., Smouni, A., & Fahr, M. (2020). Zinc hyperaccumulation in plants: A review. Plants, 9, 562. https://doi.org/10.3390/plants9050562

Bankaji, I., Sleimi, N., Gómez-Cadenas, A., & Pérez-Clemente, R.M. (2016). NaCl protects against Cd and Cu-induced toxicity in the halophyte Atriplex halimus. Spanish Journal of Agricultural Research, 14, e0810. http://dx.doi.org/10.5424/sjar/2016144-10117

Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205–207. https://doi.org/10.1007/BF00018060

Ben Amor, N., Jiménez, A., Boudabbous, M., Sevilla, F., & Abdelly, C. (2020). Chloroplast Implication in the tolerance to salinity of the halophyte Cakile maritima. Russian Journal of Plant Physiology, 67, 507–514. https://doi.org/10.1134/S1021443720030048

Boominathan, R., & Doran, P.M. (2002). Ni‐induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytologist, 156, 205–215. https://doi.org/10.1046/j.1469-8137.2002.00506.x

Boughalleb, F., & Denden, M. (2011). Physiological and biochemical changes of two halophytes, Nitraria retusa (Forssk.) and Atriplex halimus (L.) under increasing salinity. Agriculture Journal, 6, 327–339.

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Cambrollé, J., Mancilla-Leytón, J.M., Muñoz-Vallés, S., Luque, T., & Figueroa, M.E. (2012). Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides. Chemosphere, 86, 867–874. https://doi.org/10.1016/j.chemosphere.2011.10.039

Casado‐Vela, J., Sellés, S., & Bru, R. (2005). Purification and kinetic characterization of polyphenol oxidase from tomato fruits (Lycopersicon esculentum cv. Muchamiel). Journal of Food Biochemistry, 29, 381–401. https://doi.org/10.1111/j.1745-4514.2005.00037.x

Černý, M., Habánová, H., Berka, M., Luklová, M., & Brzobohatý, B. (2018). Hydrogen peroxide: its role in plant biology and crosstalk with signalling networks. International Journal of Molecular Sciences, 19, 2812. https://doi.org/10.3390/ijms19092812

Chance, B., & Maehly, A.C. (1954). Assay of catalases and peroxidases. Methods of Biochemical Analysis, 1, 357–424. https://doi.org/10.1002/9780470110171.ch14

Chen, S., Wang, Q., Lu, H., Li, J., Yang, D., Liu, J., & Yan, C. (2019). Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia obovata under Cd and Zn stress. Ecotoxicology and Environmental Safety, 169, 134–143. https://doi.org/10.1016/j.ecoenv.2018.11.004

Cheng, M., Wang, A., Liu, Z., Gendall, A.R., Rochfort, S., & Tang, C. (2018). Sodium chloride decreases cadmium accumulation and changes the response of metabolites to cadmium stress in the halophyte Carpobrotus rossii. Annals of Botany, 122, 373–385. https://doi.org/10.1093/aob/mcy077

Cheng, S., Yang, Z., Wang, M., Song, J., Sui, N., & Fan, H. (2014). Salinity improves chilling resistance in Suaeda salsa. Acta Physiologia Plantarum, 36, 1823–1830. https://doi.org/10.1007/s11738-014-1555-3

Chun, H.J., Baek, D., Cho, H.M., Lee, S.H., Jin, B.J., Yun, D.J., … Kim, M.C. (2019). Lignin biosynthesis genes play critical roles in the adaptation of Arabidopsis plants to high-salt stress. Plant Signaling & Behavior, 14, 1625697. https://doi.org/10.1080/15592324.2019.1625697

Dal Corso, G. (2012). Heavy metal toxicity in plants. In: Furini, A. (Eds.), Plants and heavy metals (pp. 1–25). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-007-4441-7_1

Debez, A., Ben Hamed, K., Grignon, C., & Abdelly, C. (2004). Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant and Soil, 262, 179–189. https://doi.org/10.1023/B:PLSO.0000037034.47247.67

Dickerson, D.P., Pascholati, S.F., Hagerman, A.E., Butlerm L.G., & Nicholson. R.L. (1984). Phenylalanine ammonia-lyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiological Plant Pathology, 25, 111–123. https://doi.org/10.1016/0048-4059%20(84)90050-X

Ellouzi, H., Ben Hamed, K., Cela, J., Munné‐Bosch, S., & Abdelly, C. (2011). Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiologia Plantarum, 142, 128–143. https://doi.org/10.1111/j.1399-3054.2011.01450.x

Fedenko, V.S., Landi, M., & Shemet, S.A. (2022). Metallophenolomics: a novel integrated approach to study complexation of plant phenolics with metal/metalloid ions. International Journal of Molecular Sciences, 23, 11370. https://doi.org/10.3390/ijms231911370

Francis, A., & Warwick, S.I. (2007). The biology of invasive alien plants in Canada. 8. Lepidium latifolium L. Canadian Journal of Plant Science, 87, 639–658. https://doi.org/10.4141/CJPS06044

Gall, H.L., Philippe, F., Domon, J.M., Gillet, F., Pelloux, J., & Rayon, C. (2015). Cell wall metabolism in response to abiotic stress. Plants, 4:112–166. https://doi.org/10.3390/plants4010112

Gao, D., Wang, Q., Wu, Y., Xu, H., Yu, Q., & Liu, J. (2008). Microsatellite DNA loci from the typical halophyte Thellungiella salsuginea (Brassicaceae). Conservation Genetics, 9, 953–955. https://doi.org/10.1007/s10592-007-9403-2

Ghanem, A.M.F., Mohamed, E., Kasem, A.M., & El-Ghamery, A.A. (2021). Differential salt tolerance strategies in three halophytes from the same ecological habitat: Augmentation of antioxidant enzymes and compounds. Plants, 10, 1100. https://doi.org/10.3390/plants10061100

Ghnaya, T., Slama, I., Messedi, D., Grignon, C., Ghorbel, M.H., & Abdelly, C. (2007). Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere, 67, 72–79. https://doi.org/10.1016/j.chemosphere.2006.09.064

Ghori, N.H., Ghori, T., Hayat, M.Q., Imadi, S.R., Gul, A., Altay, V., & Ozturk, M. (2019). Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 16, 1807–1828. https://doi.org/10.1007/s13762-019-02215-8

Giannopolitis, C.N., & Ries, S.K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59, 309–314. https://doi.org/10.1104/pp.59.2.309

Guarino, F., Ruiz, K.B., Castiglione, S., Cicatelli, A., & Biondi, S. (2020). The combined effect of Cr (III) and NaCl determines changes in metal uptake, nutrient content, and gene expression in quinoa (Chenopodium quinoa Willd.). Ecotoxicology and Environmental Safety, 193, 110345. https://doi.org/10.1016/j.ecoenv.2020.110345

Hafeez, B.M.K.Y., Khanif, Y.M., & Saleem, M. (2013). Role of zinc in plant nutrition-a review. American Journal of Experimental Agriculture, 3, 374. https://doi.org/10.9734/AJEA/2013/2746

Hajiboland, R., Bahrami-Rad, S., Akhani, H., & Poschenrieder, C. (2018). Salt tolerance mechanisms in three Irano-Turanian Brassicaceae halophytes relatives of Arabidopsis thaliana. Journal of Plant Research, 131, 1029–1046. https://doi.org/10.1007/s10265-018-1053-6

Hajiboland, R., Bahrami-Rad, S., Zeinalzade, N., Atazadeh, E., Akhani, H., & Poschenrieder, C. (2020). Differential functional traits underlying the contrasting salt tolerance in Lepidium species. Plant and Soil, 448, 315–334. https://doi.org/10.1007/s11104-020-04436-0

Han, R.M., Lefèvre, I., Ruan, C.J., Qin, P., & Lutts, S. (2012). NaCl differently interferes with Cd and Zn toxicities in the wetland halophyte species Kosteletzkya virginica (L.) Presl. Plant Growth Regulation 68, 97–109. https://doi.org/10.1007/s10725-012-9697-z

Han, X., Zhao, Y., Chen, Y., Xu, J., Jiang, C., Wang, X., Zhou, R., … Zhang, J. (2022). Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. Forestry Research, 2, 9. https://doi.org/10.48130/FR-2022-0009

Harinasut, P., Poonsopa, D., Roengmongkol, K., & Charoensataporn, R. (2003). Salinity effects on antioxidant enzymes in mulberry cultivar. ScienceAsia, 29, 109–113. https://doi.org/10.2306/scienceasia1513-1874.2003.29.109

Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., & Ahmad A. (2012). Role of proline under changing environments: a review. Plant Signaling & Behavior, 7, 1456–1466. https://doi.org/10.4161/psb.21949

Hodges, D.M., DeLong, J.M., Forney, C.F., & Prange, R.K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604–611. https://doi.org/10.1007/s004250050524

Kaur, T., Hussain, K., Koul, S., Vishwakarma, R., & Vyas, D. (2013). Evaluation of nutritional and antioxidant status of Lepidium latifolium Linn.: a novel phytofood from Ladakh. PLoS ONE, 8, e69112. https://doi.org/10.1371/journal.pone.0069112

Keilig, K., & Ludwig-Müller, J. (2009). Effect of flavonoids on heavy metal tolerance in Arabidopsis thaliana seedlings. Botanical Studies, 50, 311–318.

Kholodova, V.P., Volkov, K.S., & Kuznetsov, V.V. (2005). Adaptation of the common ice plant to high copper and zinc concentrations and their potential using for phytoremediation. Russian Journal of Plant Physiology, 52, 748–757. https://doi.org/10.1007/s11183-005-0111-9

Kováčik, J., Klejdus, B., & Bačkor, M. (2009). Phenolic metabolism of Matricaria chamomilla plants exposed to nickel. Journal of Plant Physiology, 166, 1460‒1464. https://doi.org/10.1016/j.jplph.2009.03.002

Koyro, H.W. (2006). Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany, 56, 136‒146. https://doi.org/10.1016/j.envexpbot.2005.02.001

Kumar, R., Mishra, R.K., Mishra, V., Qidwai, A., Pandey, A., Shukla, S.K., … Dikshit, A. (2016). Detoxification and tolerance of heavy metals in plants. In: Ahmad, P, (Eds.) Plant metal interaction (pp. 335‒359). Elsevier. https://doi.org/10.1016/B978-0-12-803158-2.00013-8

Kumari, A., Goyal, V., & Sheokand, S. (2019). Oxidative stress and antioxidant defense under metal toxicity in halophytes. In: Hasanuzzaman, M., Nahar, K., Öztürk. M. (Eds.) Ecophysiology, abiotic stress responses and utilization of halophytes. Springer (pp. 115‒155), Singapore, https://doi.org/10.1007/978-981-13-3762-8_6

Küpper, H., & Andresen, E. (2016). Mechanisms of metal toxicity in plants. Metallomics, 8, 269‒285. https://doi.org/10.1039/C5MT00244C

Leiková, A., Giehl, R.F., Hartmann, A., Fargaiová, A., & von Wirén, N. (2017). Heavy metals induce iron deficiency responses at different hierarchic and regulatory levels. Plant Physiology, 174, 1648‒1668. https://doi.org/10.1104/pp.16.01916

Lichtenthaler, H.K., & Welburn, A. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extract in different solvents. Biochemical Society Transactions, 603, 591‒592. https://doi.org/10.1042/bst0110591

Lokhande, V.H., & Suprasanna, P. (2012). Prospects of halophytes in understanding and managing abiotic stress tolerance. In: Ahmad, P. & Prasad, M. (Eds.) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer (pp. 29‒56), New York. https://doi.org/10.1007/978-1-4614-0815-4_2

MacFarlane, G.R., & Burchett, M.D. (2002). Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Marine Environmental Research, 54, 65‒84. https://doi.org/10.1016/S0141-1136 (02)00095-8

Mahon, S., & Carman, K.R. (2008). The influence of salinity on the uptake, distribution, and excretion of metals by the smooth cordgrass, Spartina alterniflora (Loisel.), grown in sediment contaminated by multiple metals. Estuaries and Coasts, 31, 1089‒1097. https://doi.org/10.1007/s12237-008-9087-y

Manara, A. (2012). Plant responses to heavy metal toxicity. In: Furini A (Eds.) Plants and heavy metals. Springer (pp. 27–53), Dordrecht. https://doi.org/10.1007/978-94-007-4441-7-2

McDonald, M., Mila, I., & Scalbert, A. (1996). Precipitation of metal ions by plant polyphenols: optimal conditions and origin of precipitation. Journal of Agricultural and Food Chemistry, 44, 599–606. https://doi.org/10.1021/jf950459q

Mejías, C.L., Musa, J.C., & Otero, J. (2013). Exploratory evaluation of retranslocation and bioconcentration of heavy metals in three species of mangrove at Las Cucharillas marsh, Journal of Tropical Life Science, 3, 14‒22. https://doi.org/10.11594/jtls.03.01.03

Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15, 523–530.

Morrison, I.M. (1972). A semi-micromethod for the determination of lignin and its use in predicting the digestibility of forage crops. Journal of Science and Food Agriculture, 23, 455–463. https://doi.org/10.1002/jsfa.2740230405

Moura, J.C., Bonine, C.A., de Oliveira Fernandes Viana, J., Dornelas, M.C., & Mazzafera, P. (2010). Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52, 360–376. https://doi.org/10.1111/j.1744-7909.2010.00892.x

Mummenhoff, K., Polster, A., Mühlhausen, A., & Theißen, G. (2009). Lepidium as a model system for studying the evolution of fruit development in Brassicaceae. Journal of Experimental Botany, 60, 1503–1513. https://doi.org/10.1093/jxb/ern304

Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167, 645–663. https://doi.org/10.1111/j.1469-8137.2005.01487.x

Novo, L.A., Covelo, E.F., & González, L. (2014). Effect of salinity on zinc uptake by Brassica juncea. International Journal of Phytoremediation, 16, 704–718. https://doi.org/10.1080/15226514.2013.856844

Peng, G., Lan, W., & Pan, K. (2022). Mechanisms of metal tolerance in halophytes: A mini review. Bulletin of Environmental Contamination and Toxicology, 109, 671–683. https://doi.org/10.1007/s00128-022-03487-6

Qiu, N., & Lu, C. (2003). Enhanced tolerance of photosynthesis against high temperature damage in salt‐adapted halophyte Atriplex centralasiatica plants. Plant, Cell & Environment, 26, 1137–1145. https://doi.org/10.1046/j.1365-3040.2003.01038.x

Rangani, J., Parida, A.K., Panda, A., & Kumari, A. (2016). Coordinated changes in antioxidative enzymes protect the photosynthetic machinery from salinity induced oxidative damage and confer salt tolerance in an extreme halophyte Salvadora persica L. Frontiers in Plant Science, 7, 50. https://doi.org/10.3389/fpls.2016.00050

Ranieri, A., Castagna, A., Baldan, B., & Soldatini, G.F. (2001). Iron deficiency differently affects peroxidase isoforms in sunflower. Journal of Experimental Botany, 52, 25–35. https://doi.org/10.1093/jexbot/52.354.25

Riyazuddin, R., Nisha, N., Ejaz, B., Khan, M.I.R., Kumar, M., Ramteke, P.W., & Gupta, R. (2021). A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules, 12, 43. https://doi.org/10.3390/biom12010043

Sako, K., Nguyen, H.M., & Seki, M. (2020). Advances in chemical priming to enhance abiotic stress tolerance in plants. Plant & Cell Physiology, 61, 1995–2003. https://doi.org/10.1093/pcp/pcaa119

Samanta, A., Das, G., & Das, S.K. (2011). Roles of flavonoids in plants. International Journal of Pharmaceutical Science, 6, 12–35.

Sekmen, A.H., Turkan, I., Tanyolac, Z.O., Ozfidan, C., & Dinc, A. (2012). Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata Bark. Environmental and Experimental Botany, 77, 63–76. https://doi.org/10.1016/j.envexpbot.2011.10.012

Shackira, A.M., & Puthur, J.T. (2019). Cd2+ influences metabolism and elemental distribution in roots of Acanthus ilicifolius L. International Journal of Phytoremediation, 21, 866–877. https://doi.org/10.1080/15226514.2019.1577356

Shah, S.S., Mohammad, F.I.D.A., Shafi, M., Bakht, J., & Zhou, W. (2011). Effects of cadmium and salinity on growth and photosynthesis parameters of Brassica species. Pakistan Journal of Botany, 43(1), 333–340.

Sharma, S.S., Dietz, K.J., & Mimura, T. (2016). Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell & Environment, 39, 1112–1126. https://doi.org/10.1111/pce.12706

Siddique, A., Kandpal, G., & Kumar, P. (2018). Proline accumulation and its defensive role under diverse stress condition in plants: An overview. Journal of Pure and Applied Microbiology, 12, 1655–1659. https://doi.org/10.22207/JPAM.12.3.73

Spenst, R.O.L. (2006). The biology and ecology of Lepidium latifolium L. in the San Francisco Estuary and their implications for eradication of this invasive weed. Dissertation, University of California, Davis.

Sruthi, P., Shackira, A.M., & Puthur, J.T. (2017). Heavy metal detoxification mechanisms in halophytes: an overview. Wetlands Ecology and Management, 25, 129–148. https://doi.org/10.1007/s11273-016-9513-z

Swain, T., & Hillis, E.E. (1959). The phenolic constituents of Prunus domestica I. The quantitative analysis of phenolic constituents. Journal of Science and Food Agriculture, 10, 63–68. https://doi.org/10.1002/jsfa.2740100110

Uarrota, V.G., Stefen, D.L.V., Leolato, L.S., Gindri, D.M., & Nerling, D. (2018). Revisiting carotenoids and their role in plant stress responses: from biosynthesis to plant signaling mechanisms during stress. In: Gupta, D., Palma, J., Corpas, F. (Eds.) Antioxidants and antioxidant enzymes in higher plants. Springer (pp. 207–232), Switzerland. https://doi.org/10.1007/978-3-319-75088-0_10

Van De Mortel, J.E., Almar Villanueva, L., Schat, H., Kwekkeboom, J., Coughlan, S., Moerland, P.D., … Aarts, M.G. (2006). Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiology, 142, 1127–1147. https://doi.org/10.1104/pp.106.082073

Van Oosten, M.J., & Maggio, A. (2015). Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environmental and Experimental Botany, 111, 135–146. https://doi.org/10.1016/j.envexpbot.2014.11.010

Van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403–433. https://doi.org/10.1146/annurev-arplant-050718-100005

Veitch, N.C. (2004). Structural determinants of plant peroxidase function. Phytochemistry Reviews, 3, 3–18. https://doi.org/10.1023/B:PHYT.0000047799.17604.94

Viehweger, K. (2014). How plants cope with heavy metals. Botanical Studies, 55, 1–12. https://doi.org/10.1186/1999-3110-55-35

Wallace, G., & Fry, S.C. (1994). Phenolic components of the plant cell wall. International Review of Cytology, 151, 229–267.

https://doi.org/10.1016/S0074-7696(08)62634-0

Yang, Y., Shi, R., Wei, X., Fan, Q., & An, L. (2010). Effect of salinity on antioxidant enzymes in calli of the halophyte Nitraria tangutorum Bobr. Plant, Cell, Tissue & Organ Culture, 102, 387–395. https://doi.org/10.1007/s11240-010-9745-1

Zeiner, M., Juranović-Cindrić, I., Nemet, I., Franjković, K., & Salopek-Sondi, B. (2022). Influence of soil salinity on selected element contents in different Brassica species. Molecules, 27, 1878. https://doi.org/10.3390/molecules27061878

Zhou, M.X., Renard, M.E., Quinet, M., & Lutts, S. (2019). Effect of NaCl on proline and glycinebetaine metabolism in Kosteletzkya pentacarpos exposed to Cd and Zn toxicities. Plant and Soil, 441, 525–542. https://doi.org/10.1007/s11104-019-04143-5




DOI: http://dx.doi.org/10.14720/aas.2023.119.1.2940

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Behzad NEZHADASAD-AGHBASH, Tayebeh RADJABIAN, Roghieh HAJIBOLAND

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941