High salicylic acid concentration alters the electron flow associated with photosystem II in barley

Ghader Habibi, Atousa Vaziri

Abstract


In this study, the effects of exogenously applied salicylic acid (0.5 and 5 mM SA) on the rates of photosystem II (PSII) activity was analysed in 4-week-old barley (Hordeum vulgare‘Bahman’ ) seedlings using chlorophyll (Chl) a fluorescence transient (OJIP) measurements. No evident changes in Chl and carotenoid contents as well as chlorophyll fluorescence transient curves were observed in either of the studied concentrations after 24 h of SA application. After 5 d, low SA concentration (0.5 mM) increased PSII activity, Chl b and carotenoid contents in barley seedlings. In contrary, 5 days after 5 mM SA treatment, the maximal quantum efficiency of PSII (Fv/Fm) and the Performance Index (PIABS), as an indicator of PSII structure and functioning, were significantly decreased. This lower Fv/Fm and PIABS coupled with lower levels of Chl b and carotenoids, and lower values of photosynthetic electron transport chain components including the electron transport flux (φEo) and the inferred oxygen evolving complex activity (Fv/Fo). By monitoring the chlorophyll a fluorescence rise kinetics, from the initial “O” level to the “P” (the peak) level, a dramatic increase in “OJ” phase was detected, which coincides with an increased photo-reduction of QA as a result of blockage of electron flow. This study provided the evidence that the high concentration of SA induced damage to different sites of the PSII.

Keywords


photosynthetic pigments; photosynthetic electron flow; Hordeum vulgare ‘Bahman’; OJIP transient flourescence; salicylic acid

Full Text:

PDF

References


Arfan, M., Athar. H. R., Ashraf, M. (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Journal of Plant Physiology, 164,685-694. doi:10.1016/j.jplph.2006.05.010

Azzabi, G., Pinnola, A., Betterle, N., Bassi, R., Alboresi, A. (2012) Enhancement of non-photochemical quenching in the bryophyte Physcomitrella patens during acclimation to salt and osmotic stress. Plant Cell Physiology, 53(10),1815-1825. doi:10.1093/pcp/pcs124

Bussotti, F., Strasser, R. J., Schaub, M. (2007) Photosynthetic behavior of woody species under high ozone exposure probed with the JIP-test: a review. Environmental Pollution, 147(3),430-437. doi:10.1016/j.envpol.2006.08.036

Chandra, A., Bhatt, R.K. (1998) Biochemical and physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthetica, 35(2),255-258. doi:10.1023/A:1006966908357

Chen, Y.E., Cui, J.M., Li, G.X., Yuan, M., Zhang, Z.W., Yuan, S., Zhang, H.Y. (2016) Effect of salicylic acid on the antioxidant system and photosystem II in wheat seedlings. Biologia Plantarum, 60(1),139-147. doi:10.1007/s10535-015-0564-4

Dong, J.Z., Wang, Y., Wang, S.H., Yin, L.P., Xu, G.J., Zheng, C., Lei, C., Zhang, M.Z. (2013) Selenium increases chlorogenic acid, chlorophyll and carotenoids of Lycium chinense leaves. Journal of the Science of Food and Agriculture, 93(2),310-315. doi:10.1002/jsfa.5758

Habibi, G., Ajory, N. (2015) The effect of drought on photosynthetic plasticity in Marrubium vulgare plants growing at low and high altitudes. Journal of Plant Research, 128(6),987-994. doi:10.1007/s10265-015-0748-1

Hamdani, S., Qu, M., Xin, C.P., Li, M., Chu, C., Zhu, X.G. (2015) Variations between the photosynthetic properties of elite and landrace Chinese rice cultivars revealed by simultaneous measurements of 820 nm transmission signal and chlorophyll a fluorescence induction. Journal of Plant Physiology, 177,128-138. doi:10.1016/j.jplph.2014.12.019

Hara, M, Furukawa, J., Sato, A., Mizoguchi, T., Miura, K. (2012) Abiotic stress and role of salicylic acid in plants. In: Abiotic Stress Responses in Plants. Springer, New York, pp 235-251. doi:10.1007/978-1-4614-0634-1_13

Hasanuzzaman, M., Nahar, K., Fujita, M. (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ecophysiology and Responses of Plants under Salt Stress. Springer, New York, pp 25-87. doi:10.1007/978-1-4614-4747-4_2

Hayat, Q., Hayat, S., Irfan, M., Ahmad, A. (2010) Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany, 68(1),14-25. doi:10.1016/j.envexpbot.2009.08.005

Janda, M., Ruelland, E. (2015) Magical mystery tour: salicylic acid signalling. Environmental and Experimental Botany, 114,117-128. doi:10.1016/j.envexpbot.2014.07.003

Javaheri, M., Mashayekhi, K., Dadkhah, A., Tavallaee, F.Z. (2012) Effects of salicylic acid on yield and quality characters of tomato fruit (Lycopersicum esculentum Mill.). International Journal of Agriculture and Crop Sciences, 4,1184-1187.

Jee, G. (1995) Sixty-Three Years Since Kautsky: Chlorophylla Fluorescence. Australian Journal of Plant Physiology, 22,131-160. doi:10.1071/PP9950131

Johnson, C.M., Stout, P.R., Broyer, T.C., Carlton, A.B. (1957) Comparative chlorine requirements of different plant species. Plant Soil, 8(4),337-353. doi:10.1007/BF01666323

Kalaji, H.M., Bosa, K., Kościelniak, J., Żuk-Gołaszewska, K. (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 73,64-72. doi:10.1016/j.envexpbot.2010.10.009

Khan, M.I.R., Asgher, M., Khan, N.A. (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry, 80,67-74. doi:10.1016/j.plaphy.2014.03.026

Lichtenthaler, H.K., Wellburn, A.R. (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. ‎ Biochemical Society Transactions, 11(5),591-592. doi:10.1042/bst0110591

Li, T., Hu, Y., Du, X., Tang, H., Shen, C., Wu, J. (2014) Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PloS one 9(10),p.e109492. doi:10.1371/journal.pone.0109492

Miura, K., Tada, Y. (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5, p.4. doi:10.3389/fpls.2014.00004

Moharekar, S.T., Lokhande, S.D., Hara, T., Tanaka, R., Tanaka, A., Chavan, P.D. (2003) Effect of salicylic acid on chlorophyll and carotenoid contents of wheat and moong seedlings. Photosynthetica, 41(2),315-317. doi:10.1023/B:PHOT.0000011970.62172.15

Pereira, W.E., de Siqueira, D.L., Martínez, C.A., Puiatti, M. (2000) Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. Journal of Plant Physiology, 157(5),513-520. doi:10.1016/S0176-1617(00)80106-6

Singh, B., Usha, K. (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39,137-141. doi:10.1023/A:1022556103536

Stirbet, A., jee, G. (2012) Chlorophyll a fluorescence induction: Understanding the thermal phase, the J-I-P rise. Photosynthesis Research, 113,15-61. doi:10.1007/s11120-012-9754-5

Strasser, B.J., Strasser, R.J. (1995) Measuring fast fluorescence transients to address environmental questions: the JIP-test. In: Photosynthesis: from Light to Biosphere. Kluwer academic publishers, Netherlands, pp 977-980. doi:10.1007/978-94-009-0173-5_1142

Strasser, R.J., Srivastava, A., Tsimilli-Michael, M. (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Probing Photosynthesis: Mechanism, Regulation and Adaptation. Taylor and Francis, London, pp 443-480.

Strasser, R.J., Tsimilli-Michael, M., Srivastava, A. (2004) Analysis of the chlorophyll a fluorescence transient. In: Advances in Photosynthesis and Respiration. Chlorophyll a Fluorescence: a Signature of Photosynthesis. Springer, Dordrecht, pp 321-362. doi:10.1007/978-1-4020-3218-9_12

Van Heerden, P.D.R., Swanepoel, J.W., Krüger, G.H.J. (2007) Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environmental and Experimental Botany, 61(2),124-136. doi:10.1016/j.envexpbot.2007.05.005

Williams, M., Senaratna, T., Dixon, K., Sivasithamparam, K. (2003) Benzoic acid induces tolerance to biotic stress caused by Phytophthora cinnamomi in Banksia attenuata. Plant Growth Regulation, 41(1),89-91. doi:10.1023/A:1027355604096

Yusuf, M.A., Kumar, D., Rajwanshi, R., Strasser, R.J., Tsimilli-Michael, M., Sarin, N.B. (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochimica et Biophysica

Acta, 1797(8),1428-1438. doi:10.1016/j.bbabio.2010.02.002




DOI: http://dx.doi.org/10.14720/aas.2017.109.2.22

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Ghader Habibi, Atousa Vaziri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941