Deficit irrigation of vines (Vitis vinifera L.) – review of experiences and potential for Slovenia

Tina SMRKE, Vesna ZUPANC

Abstract


Deficit irrigation is one of the most researched irrigation water management techniques for vines with many potential benefits for successful grape production. For optimal growth and grape quantity of individual variety, suitable water quantity over growing season should be provided. Due to more frequent droughts vine irrigation will be needed also in Slovenia. The principle of deficit irrigation is affecting vine growth and quality and quantity of the yield by adding smaller amount of water than optimal. Decreased vine growth (reduced growth of shoots, 15.5 % for 'Monastrell, reduced leaf area, reduced pruning mass), smaller berries, and thus yield quantity from 38 % to 57 % for ‘Monastrell’ and 24 % to 27 % for 'Tempranillo', respectively, improved berry composition (higher sugar and antocianin content, lower acid content), better water use efficiency, meaning higher yield per unit of added water, are expected. Most suitable method for deficit irrigation management of vines is by measuring plant water potential. For successful transfer of deficit irrigation in practice, good knowledge of critical growth stages of irrigated vine variety and its behavior in a certain environment is needed. Successful application of this irrigation method in practice will be possible only with financial and expert support.

Keywords


vines; irrigation; deficit irrigation; growth; fertility; grape berry composition

References


Acevedo-Opazo C., Ortega-Farias S., Fuentes S. (2010). Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agricultural Water Managament, 97, 956-96. doi:10.1016/j.agwat.2010.01.025

Allen R.G., Pereira L.S., Raes D., Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and drainage paper, 56. Rome, Food and Agriculture Organization of the United Nations: 300 str.

Araujo F., Williams L. E., Grimes D. W., Mathews M. A. (1995a). A comparative study of young ‘Thompson Seedless’ grapevines under drip and furrow irrigation. I. Root and soil water distributions. Scientia Horticulturae, 60, 235-249. doi:10.1016/0304-4238(94)00710-W

Araujo F., Williams L. E., Mathews M. A. (1995b). A comparative study of young ‘Thompson Seedless’ grapevines (Vitis vinifera L. ) under drip and furrow irrigation. II. Growth, water use efficiency and nitrogen partitioning. Scientia Horticulturae, 60, 251-265. doi:10.1016/0304-4238(94)00711-N

Barroso J.M., Pombeiro L., Rato A.E. (2017). Impacts of crop level, soil and irrigation management in grape berries of cv 'Trincadeira (Vitis vinifera L.). Journal of Wine Research, 28 (1), 1-12. doi:10.1080/09571264.2016.1238350

Camp C. R. (1998). Subsurface drip irrigation: a review. Transactions of the ASAE, 41, 5, 1353-1367. doi:10.13031/2013.17309

Cancela, J.J., Rey, B.J., Fandiño, M., Martínez, E.M., Lopes, C.M., Egipto, R., Silvestre, J.M. (2017) Tools for management of irrigation in vineyards: An approach to farmers. Acta Horticulturae, 1150, 471-476, doi:10.17660/ActaHortic.2017.1150.65

Chaves M.M., Zarrouk, O., Francisco, R., Costa, J.M., Santos, T., Regalado, A.P., Rodrigues M.L. Lopes, C.M. (2007). Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105, 661–676. 2010 doi:10.1093/aob/mcq030

Cifre J., Bota J., Escalona J.M., Medrano H., Flexas J. (2005). Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.). An open gate to improve water-use efficiency? Agriculture, Ecosystems and Environment, 106, 159-170. doi:10.1016/j.agee.2004.10.005

Conesa M.R., de la Rosa J.M., Domingo R., Baῆon S., Pérez-Pastor A. (2016). Changes induced by water stress on water relations, stomatal behaviour and morphologyof table grapes (cv. Crimson Seedless) grown in pots. Scientia Horticulturae, 202, 9-16. doi:10.1016/j.scienta.2016.02.002

Cvejič R., Pintar M. (2013). Namakanje. Šentjur, 27 november 2013. Oddelek za agronomijo, Biotehniška fakulteta, Univerza v Ljubljani

Cvejić R., Zupanc V., Pintar M. (2015). Primerjava razvoja namakanja v Sloveniji z globalnim trendom = Development of irrigation in Slovenia from a global perspective. Hmeljarski bilten, 22, 74-85.

Deluc L.G. Quilici D.R., Decendit A., Grimplet J., Wheatley M.D., Schlauch K.A., Merillon J. Cushman J.C., Cramer G.R. (2009). Water deficit alters differentialy metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics, 10.

Döll P. (2002). Impact ofclimate change an variability on irrigation requirements: A global perspective. Climatic change, 54, 269-293. doi:10.1023/A:1016124032231

dos Santos T.P., Lopes C.M., Rodrigues M.L., de Souza C.R., Maroco J.P., Pereira J.S., Silva J.R., Chaves M.M. (2003). Partial rootzone drying: effects on growth and fruit quality of field-grown grapevines (Vitis vinifera). Functional plant biology, 30, 663-671. doi:10.1071/FP02180

Du T., Kang S., Zhang J., Li F., Yan B. (2008). Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation. Agricultural water management, 95, 659-668. doi:10.1016/j.agwat.2008.01.017

Du T., Kang S., Yan B., Zhang J. (2013). Alternate furrow irrigation: A practical way to improve grape quality and water use efficiency in arid northwest China. Journal of Integrative Agriculture, 12(3), 509-519. doi:10.1016/S2095-3119(13)60252-X

Edwards E.J., Clingeleffer P.R. (2013). Interseasonal effects of regulated deficit irrigation on growth, yield, water use, berry composition, and wine attributes of Cabernet Sauvignon grapevines. Australian Journal of Grape and Wine Research, 19, 261-276. doi:10.1111/ajgw.12027

English M., Raja S.N. (1996). Perspectives on deficit irrigation. Agricultural Water Management, 32, 1-14. doi:10.1016/S0378-3774(96)01255-3

Esteban M.A, Villanueva M.J., Lissarrague J. (2001). Effect of irrigation on changes in the anthocyanin composition of the skin of cv. Tempranillo (Vitis vinifera L.) grape berries during ripening. Journal of the Science of Food and Agriculture, 81, 409-420. doi:10.1002/1097-0010(200103)81:4<409::AID-JSFA830>3.0.CO;2-H

Evapotranspiration and Grapevine Water Use. (2015). WSU viticulture and enology, Washington State University. http://wine.wsu.edu/research-extension/weather/evapotranspiration/ (1. sept. 2015)

FAO database. Food and Agriculuture Organisation of the United Nations. Aquastat. http://www.fao.org/nr/water/aquastat/data/query/results.html (18.feb. 2016)

Fereres E., Soriano M.A. (2007). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58(2), 147-159. doi:10.1093/jxb/erl165

Fernandez J.E., Green S.R., Caspari H.W., Diaz-Espejo A., Cuevas M.V. (2008). The use of sap flow measurements for scheduling irrigation in olive, apple and Asian pear trees and in grapevines. Plant and Soil, 305(1-2), 91-104. doi:10.1007/s11104-007-9348-8

Fernandez J.E. (2014). Understanding olive adaptation to abiotic stresses as a tool to increase crop performance. Environmental and Experimental Botany, 103, 158–179. doi:10.1016/j.envexpbot.2013.12.003

Geerts S., Raes D. (2009). Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management, 96, 1275-1284. doi:10.1016/j.agwat.2009.04.009

Goldammer T. (2018). Grape Grower's Handbook: A Guide to Viticulture for Wine Production. Third edition. U.S.A., Apex Publishers: 482 str.

Greenspam M.D., Schultz H.R., Matthews M.A. (1996). Field evaluation of water transport in grape berries during water deficits. Physiologia Plantarum, 97(1), 55-62. doi:10.1111/j.1399-3054.1996.tb00478.x

Grimplet J., Deluc L.G., Cramer G., Cushman J.C. (1970). Integrating functional genomics with salinity and water deficit stress responses in wine grape – Vitis vinifera. Advances in molecular breeding toward drought and salt tolerant crops, 643-668.

Gu S., Du G., Zoldoske D., Hakim A., Cochran R., Fugelsang K., Jorgensen G. (2004). Effects of irrigation amount on water relations, vegetative growth, yield and fruit composition of Sauvignon blanc grapevines under partial rootzone drying and conventional irrigation in the San Joaquin Valley of California, USA. Journal of Horticultural Sciense and Biotechnology, 79(1), 26-33. doi:10.1080/14620316.2004.11511732

Hannah L., Roehrdanz P.R., Ikegami M., Shepard A.V., Shaw M.R., Tabor G., Zhi L., Marquet P.A., Hijmans R.J. (2013). Climate change, wine and conservation. Proceedings of the National Academy of Sciences of the Unated States of America, 110(17), 6907-6912. doi:10.1073/pnas.1210127110

Hepner Y., Bravdo B., Loinger C., Cohen S., Tabacman H. (1985). Effect of drip irrigation schedules on growth, yield, must composition and wine quality of Cabernet Sauvignon. American Journal of Enology and Viticulture, 36, 77-85.

Hladnik M., Jakše J., Bandelj D., Vuk I. (2014). The characterisation of Vitis vinifera 'Refošk' with AFLP and SSR molecular markers and ampelographic traits. Acta Agriculturae Slovenica, 103(1), 55-64. doi:10.14720/aas.2014.103.1.06

Hochberg U., Degu A., Fait A., Rachmilevitch S. (2017). Grapevines hydraulic diversity - A critical consideration for irrigation management. Acta Horticulturae, 1150, 443-448. doi:10.17660/ActaHortic.2017.1150.61

Imazio S., De Lorenzis G., Scienza A., Failla O., Vouillamoz J., Korošec-Koruza Z., Rusjan D., Nikolao N. (2014). 'Ribolla Gialla' from North Eastern Italy, 'Rebula' from Northern Balkans and 'Robola' from Ionian Islands; Do they belong to the same population variety or are they genetically different? Acta Horticulturae, 1046, 645-652.

doi:10.17660/ActaHortic.2014.1046.88

Intrigliolo D.S., Castel J.R. (2009). Response of Vitis vinifera cv. 'Tempranillo' to partial rootzone drying in the field: Water relations, growth, yield and fruit and wine quality.Agricultural Water Managament, 96, 282-292. doi:10.1016/j.agwat.2008.08.001

Kajfež Bogataj L. (2009). Climate change and future adaptation. Economic and business review, 11(1), 9-27.

Katerji N., Mastrorilli M., Rana G. (2008). Water use efficiency of crops cultivated in the Mediterranean region: Review and analysis. European Journal of Agronomy, 28(4). doi:10.1016/j.eja.2007.12.003

Kosta H. (1998). Vinogradniški nasveti. Ljubljana, Kmečki glas: 149 str.

Kumar Kar R. (2011). Plant responses to water stress. Role of reactive oxygen species. Plant Signaling and Behavior, 6(11), 1741-1745. doi:10.4161/psb.6.11.17729

Lamovšek, J., Zidarič, I., Mavrič Pleško, I., Urek, G., Trdan, S. (2014). Comparative study of diagnostic methods used for monitoring of common grape vine (Vitis vinifera L.) crown gall (Agrobacterium vitis Ophel & Kerr) in Slovenia.Acta Agriculturae Slovenica, 103(2), 313-321. doi:10.14720/aas.2014.103.2.16

Lanari V., Pallioti A., Sabbatini P., Howell G.S. (2014). Optimizing deficit irrigation strategies to manage vine performance and fruit composition of field-grown 'Sangiovese' (Vitis vinifera L.) grapevines. Scientia Horticulturae, 179, 239-247. doi:10.1016/j.scienta.2014.09.032

Lavrenčič P., Peterlunger P., Sivilotti E. (2007). Water stress and root hydraulic conductivity in grapevine grafted on different rootstocks. Acta Horticulturae, 754, 283-288. doi:10.17660/ActaHortic.2007.754.36

Lovisolo, C., Perrone, I., Carra, A., Ferrandino, A., Flexas, J., Medrano, H., Schubert, A. (2010). Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular update. Functional Plant Biology, 2010(37), 98–116. doi:10.1071/FP09191

Lu P., Yunusa I.A.M., Walker R.R., Müller W.J. (2003). Regulation of canopy conductance an transpiration and their modeling in irrigated grapevines. Functional Plant Biology, 30, 689-698. doi:10.1071/FP02181

Malheiro A.C., Santos J.A., Fraga H., Pinto J.G. (2010). Climate change scenarios applied to viticultural zoning in Europe. Climate Research, 43, 163-177. doi:10.3354/cr00918

Maljevič J. (2003). Naravi in ljudem prijazno vinogradništvo. Novo mesto, KGZS – Zavod: 93 str.

Matthews M.A., Anderson M.M., Schultz H.R. (1987). Phenologic and growth responses to early and late season water deficits in Cabernet franc. Vitis – Journal of Grapevine Research, 26, 147-160.

Matthews M.A., Anderson M.M. (1988). Fruit ripening in Vitis vinifera L.: Responses to seasonal water deficits. American Journal of Enology and Viticulture, 39(4), 313-320.

Matthews M.A., Ishii R., Anderson M.M., O'Mahony M. (1990). Dependence of wine sensory attributes on wine water status. Journal of the Science of Food and Agriculture, 51(3), 321-335. doi:10.1002/jsfa.2740510305

McCarthy M.G. (1997). The effect of transient water deficit on berry development of cv. Shiraz (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 3, 102-108. doi:10.1111/j.1755-0238.1997.tb00128.x

Medrano H., Escalona J.M., Cifre J., Bota J., Flexas J. (2003). A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality. Functional Plant Biology, 30, 607-619. doi:10.1071/FP02110

Montalebifard R., Najafi N., Oustan S. Nyshabouri M. R., Valizadeh M. (2013). The combined effects of phosporous and zinc on evapotranspiration, leaf water potential, water use efficiency and tuber attributes of potato under water deficit conditions. Scientia Horticulturae, 162, 31 – 38. doi:10.1016/j.scienta.2013.07.043

Moriana A., Orgaz F., Pastor M., Fereres E. (2003). Yield responses of a mature olive orchard to water deficits. Journal of the American Society of Horticultural Science, 128(3), 425-431.

Moyer M., Peters R. T., Hamman R. (2013). Irrigation Basics for Eastern Washington Vineyards. Washington State University Extension. http://cru.cahe.wsu.edu/CEPublications/EM061E/EM061E.pdf (12.dec. 2015)

Novello V., Schubert A., Antonietto M., Boschi A. (1992). Water relations of grapevine cv. Cortese with different training systems. Vitis – Journal of Grapevine research, 31(2), 65-75.

OIV (International Organisation of Vine and Wine). (2011). http://www.oiv.int/en/ (9.11.2018)

Patakas A., Noitsakis B., Chouzouri A. (2005). Optimization of irrigation water use in grapevines using the relationship between transpiration and plant water status. Agricluture, Ecosystem and Environment, 106, 253-259. doi:10.1016/j.agee.2004.10.013

Pelengič R., Pipan B., Meglič V., Rusjan D. (2012). Ovrednotenje genskih virov belih sort žlahtne vinske trte (Vitis vinifera L.). Acta agriculturae Slovenica, 99, 433-438.

Pintar M. (2006). Osnove namakanja s poudarkom na vrtninah in sadnih vrstah v zahodni, osrednji in južni Sloveniji. Ljubljana, Ministrstvo za kmetijstvo, gozdarstvo in prehrano: 55 str.

Pintar M., Zupanc V. (2017). Deficitno namakanje v poljedelstvu in zelenjadarstvu - izzivi in perspektive. V: Čeh B. (ur.), et al. Novi izzivi v agronomiji 2017 : zbornik simpozija, Laško, 2017 Ljubljana: Slovensko agronomsko društvo. 2017, str. 272-276

Podgornik M., Bandelj D. 2015. Deficitni princip namakanja oljčnih nasadov v Slovenski Istri. Acta agriculturae Slovenica, 105, 337-344.

Poling B., Spayd S. (2015). Grapevine water relations and vineyard irrigation. The North Carolina Winegrape Grower's Guide. http://content.ces.ncsu.edu/chapter-10-grapevine-water-relations-and-vineyard-irrigation.pdf (12.dec. 2015)

Reščič J., Mikulič-Petkovšek M., Štampar F., Zupan A., Rusjan D. (2015). The impact of cluster thinning on fertility and berry and wine composition of 'Blauer Portugieser' (Vitis vinifera L.) grapevine variety. Journal International des Sciences de la Vigne et du Vin, 49(4), 275-291. doi:10.20870/oeno-one.2015.49.4.16

Reščič J., Mikulič-Petkovšek M., Rusjan D. (2016). The impact of canopy managements on grape and wine composition of cv. 'Istrian Malvasia' (Vitis vinifera L.). Journal of the Science of Food and Agriculture, 96(14), 4724-4735. doi:10.1002/jsfa.7778

Roby G., Harbertson J.F., Adams D.A., Matthews M.A. (2004). Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Australian Journal of Grape and Wine Research, 10, 100-107. doi:10.1111/j.1755-0238.2004.tb00012.x

Rogiers S. Y., Greer D. H., Hutton R. J., Landsberg J. J. (2009). Does night-time transpiration contribute to anisohydric behaviour in a Vitis vinifera cultivar? Journal of Experimental Botany, 60(13), 1-13. doi:10.1093/jxb/erp217

Romano N, Santini, A.. (2002). Water retention and storage: Field. V: Methods of Soil Analysis, Part 4, Physical Methods, Edition: SSSA Book Series N.5, Chapter: Water retention and storage: Field., Publisher: Soil Science Society of America, Editors: J.H. Dane, G.C. Topp, pp.721-738

Romero P., Gil-Muñoz R., M. del Amor F., Valdés E., Fernandez J.I., Martinez-Cutillas A. (2013). Regulated deficit irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and vines. Agricultural Water Managament, 121, 85-101. doi:10.1016/j.agwat.2013.01.007

Ruiz-Sanchez M.C., Domingo R., Castel J.R. (2010). Review. Deficit irrigation in fruit trees and vines in Spain. Spanish Journal of Agricultural Research, 8, S5-S20. doi:10.5424/sjar/201008S2-1343

Rusjan D. (2018). Osebna komunikacija.

Rusjan D., Bubola M., Janjanin D., Užila Z., Radeka S., Poljuha D., Pelengić R., Javornik B., Štajner N. (2015). Ampelographic characterisation of grapevine accesions denominated 'Refošk', 'Refosco', Teran' and 'Terrano' (Vitis vinifera L.) from Slovenia, Croatia and Italy. Vitis – Journal of Grapevine Research, 54, 77-80.

Salon J.L., Chirivella C., Castel J.R. (2005). Response of cv. Bobal to timing on deficit irrigation in Requena, Spain: Water relations, yield and wine quality. American Journal of Enology and Viticulture, 56, 1, 1-8.

Santesteban L.G., Miranda C., Royo J.B. (2011). Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. 'Tempranillo'. Agricultural Water Managament, 98, 1171-1179. doi:10.1016/j.agwat.2011.02.011

Schultz H.R. (2003). Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant, Cell and Environment, 26, 1393-1405. doi:10.1046/j.1365-3040.2003.01064.x

Simončič J., Mavrič Štrukelj M., Brdnik M., Štabuc R., Novak E. (2017). Slovenski vinogradi. V: Zbornik prispevkov. 5. Slovenski vinogradniško-vinarski kongres, Šentjernej, 12. maj 2017. Čuš F., Košmerl T., Vanzo A. (ur.). Ljubljana, Kmetijski Inštitut Slovenije: 2-36

Sousa T.A., Oliveira M.T., Pereira J.M. (2006). Physiological indicators of plant water status of irrigated an non-irrigated grapevines grown in a low rainfall area of Portugal. Plant and Soil, 282, 127-134. doi:10.1007/s11104-005-5374-6

Stajnko D., Pulko B., Rakun J. (2010). Possible application of didifferental global positioning siystem (DGPS) to harvesting date and precision viticulture. African Journal of Biotechnology, 9(48), 8182-8191. doi:10.5897/AJB10.1245

Statistični urad Republike Slovenije. Irrigation by type of area, Slovenia, annually by IRRIGATED AREA, MEASURES and YEAR. http://pxweb.stat.si/pxweb/Dialog/Saveshow.asp (18.feb. 2016)

Steudle E., (2001). The cohesion-tension mechanism and the acquisition of water by plant roots. Annual Review of Plant Physiological and Molecular Biology, 52, 847-875. doi:10.1146/annurev.arplant.52.1.847

Štajner N., (2010). Mikrosatelitski markerji uporabni za identifikacijo kultivarjev vinske trte (Vitis vinifera L.). Acta agriculturae Slovenica, 95, 183-192.

Štrukelj, M., Razinger, J., Grubar, B., Žibrat, U., Mavrič Pleško, I., Vodnik, D., Urek, G. (2016) Physiological response of grapevine Vitis vinifera L. to grapevine leafroll associated viruses (GLRaV-1 and GLRaV-1 + GLRaV-3) | [Fiziološki odziv žlahtne vinske trte Vitis vinifera L. na okužbo z zvijanjem listov vinske trte povezanih virusov (GLRaV-1 in GLRaV-1 + GLRaV-3)] Acta Agriculturae Slovenica. 107(2), 519-529. doi:10.14720/aas.2016.107.2.22

Tomaz A., Pacheco C.A., Coleto Martinez J.M. (2017). Influence of cover cropping on water uptake dynamics in an irrigated Mediterranean vineyard. Irrigation and Drainage, 66(3), 387-395. doi:10.1002/ird.2115

Tuller M., Or D. (2005). Water films and scaling of soil characteristic curves at low water contents. Water Resources research, 41(9), W09403. doi:10.1029/2005WR004142

Vodnik D. (2012). Osnove fiziologije rastlin. Ljubljana, Oddelek za agronomijo, Biotehniška fakulteta: 141 str.

Vršič S., Lešnik M. (2010). Vinogradništvo. 2. dopolnjena izdaja, Ljubljana, Kmečki glas: 403 str.

Williams L.E., Ayars J.E. (2005). Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agricultural and Forest Meteorology, 132, 201-211. doi:10.1016/j.agrformet.2005.07.010

Yunusa I.A.M., Walker R.R., Lu P. (2004). Evapotranspiration components from energy balance, sapflow and microlysimetri techniques for an irrigated vineyard in inland Australia. Agricultural and Forest Meteorology, 127, 93-107. doi:10.1016/j.agrformet.2004.07.001

Zhang Y., Kang S., Ward E.J., Ding R., Zhang X., Zheng R. (2011). Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: Dyanmics and influental factors. Agricultural Water Management, 98, 1207-1214. doi:10.1016/j.agwat.2011.03.006

Zhang Y.,Oren R., Kang S. (2012). Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects on hydraulic properties and indirect effects of canopy leaf area. Tree Physiology, 32, 262-279. doi:10.1093/treephys/tpr120

Zhang Q., Wang S., Li L., Inoue M., Xiang J., Qui G., Jin W. (2014). Effects of mulching and sub-surface irrigation on vine growth, berry sugar content and water use of grapevines. Agricultural Water Management, 14, 1-8. doi:10.1016/j.agwat.2014.05.015

Zsófi Z., Tóth E., Váradi G., Rusjan D., Bálo B. (2008). The effect of progressive drought on water relations and photosynthetic performance of two grapevine cultivars (Vitis vinifera L.). Acta Biologica Szegediensis, 52(2), 321-322.




DOI: http://dx.doi.org/10.14720/aas.2018.111.3.18

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Tina Hajdinjak, Vesna Zupanc

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941