Cadmium treatment effects on the growth and antioxidant system in barley plants under optimal and low temperatures

Natalia KAZNINA, Julia BATOVA, Natalia REPKINA, Galina LAIDINEN, Alexandr TITOV


The cadmium effect (100 μM) on the barley (Hordeum vulgare L.) growth, the content of HvCu/ZnSOD, HvCAT2 and HvPRX07 transcripts and the antioxidant enzymes activity (SOD, CAT and PRX) in roots and leaves of seedlings under optimal (22 °C) and low (4 °C) temperatures were studied. Exposure to cadmium at 22 °C did not inhibit the plants’ growth. In this case, the rate of the oxidative processes in the cells remained at the control level. This was achieved by a corresponding increase of the gene transcripts and the antioxidant enzymes activity in roots and leaves. In contrast, exposure to cadmium at 4 °C inhibited the seedlings’ growth despite of the lower metal content in the plants. Moreover the rate of lipid peroxidation in the roots and leaves increased significantly. It is assumed that this effect was connected with the accumulation of excess amounts of hydrogen peroxide due to a misbalance between its generation and neutralization. This assumption is confirmed by the obtained data, according to which the level of HvCu/ZnSOD expression and the total activity of SOD increased significantly under exposure to cadmium at 4 °C, although HvCAT2 and HvPRX07 transcripts and CAT and PXR activity did not rise.


Hordeum vulgare L.; cadmium; low temperature; growth; antioxidant enzymes; gene expression

Full Text:



Aebi, H. E. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. doi:10.1016/S0076-6879(84)05016-3

Avasthi, R., Bhandari, K., Nayyar, H. (2015). Temperature stress and redox homeostasis in agricultural crops. Frontiers in Environmental Science, 3, 1-24. doi:10.3389/fenvs.2015.00011

Beauchamp, C., Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical of Biochemistry, 44, 276-287. doi:10.1016/0003-2697(71)90370-8

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical of Biochemistry, 72, 248-254. doi:10.1016/0003-2697(76)90527-3

Foyer, C.H., Noctor, G. (2005). Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment, 29, 1056-1071. doi:10.1111/j.1365-3040.2005.01327.x

Foyer C. H., Noctor, G. (2015). Defining robust redox signalling within the context of the plant cell. Plant, Cell and Environment, 38, 239-239. doi:10.1111/pce.12487

Gechev, T., Willekens, H., Van Montagu, M., Inze, D., Van Camp, W., Toneva, V., Minkov, I. (2003) Different responses of tobacco antioxidant enzymes to light and chilling stress. Journal of Plant Physiology, 160, 509-515. doi:10.1078/0176-1617-00753

Gill, S. S, Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48, 909-930. doi:10.1016/j.plaphy.2010.08.016

Heath, R. L., Packer, L. (1968). Photoperoxidation in isolated cloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198. doi:10.1016/0003-9861(68)90654-1

Janda, T., Szalai, G., Rios-Gonzaier, K., Veisz, O., Páldi, E. (2003). Comparative study of frost tolerance and antioxidant activity in cereals. Plant Science, 164, 301-306. doi:10.1016/S0168-9452(02)00414-4

Khan, M. A., Samiullah, S., Singh, S., Nazar, R. (2007). Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. Journal of Agronomy and Crop Science, 193, 435-444. doi:10.1111/j.1439-037X.2007.00272.x

Lee, K., Bae, D.W., Kim, S. H., Han, H. J., Liu, X., Park, N. C., Lim, C. O., Lee, C. Y., Chung, W. S. (2010). Comparative proteomic analyses of the short-term responses of rice roots and leaves to cadmium. Journal of Plant Physiology, 167, 161-168. doi:10.1016/j.jplph.2009.09.006

Livak, K. J., Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 –ΔΔCt method. Methods, 25, 402-408. doi:10.1006/meth.2001.1262

Lukačová, Z., Švubová, R., Kohanová, J., Lux, A. (2013). Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regulation, 70, 89-103. doi:10.1007/s10725-012-9781-4

Luo, H., Li, H., Zhang, X., Fu, J. (2011). Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress. Ecotoxicology, 20, 770-778. doi:10.1007/s10646-011-0628-y

Maehly, A. C., Chance, B. (1954). The assay of catalase and peroxidase. Methods of Biochemical Analysis, 1, 357-424.

Sandalio, L. M., Dalurzo, H. C., Gómez, M., Romero-Puertas, M. C., Del Rio, L. A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52, 2115-2126. doi:10.1093/jexbot/52.364.2115

Schützendübel, A., Polle, A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany. 53, 1351-1365. doi:10.1093/jexbot/53.372.1351

Sergeant, K., Kieffer, P., Dommes, J., Hausman, J.-F., Renaut, J. (2014). Proteomic changes in leaves of poplar exposed to both cadmium and low-temperature. Environmental and Experimental Botany, 106, 112-123. doi:10.1016/j.envexpbot.2014.01.007

Sin’kevich, M. S., Naraikina, N. V., Trunova, T. I. (2011). Processes hindering activation of lipid peroxidation in cold-tolerant plants under hypothermia. Russian Journal of Plant Physiology, 58, 1020-1026. doi:10.1134/S1021443711050232

Smeets, K., Opdenakker, K., Remans, T., Van Sanden, S., Van Belleghem, F., Semane, B. (2009). Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to Cd or Cu in a multipollution context. Journal of Plant Physiology, 166, 1982-1992. doi:10.1016/j.jplph.2009.06.014

Smeets, K., Ruytinx, J., Semane, B., Van Belleghem, F., Remans, T., Van Sanden, S., Vanginsveld. J., Cuypers, A. (2008). Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environmental and Experimental Botany, 63, 1-8. doi:10.1016/j.envexpbot.2007.10.028

Venzhik, Yu. V., Talanova, V. V., Titov, A. F., Kholoptseva, E. S. (2015). Similarities and differences in wheat plant responses to low temperature and cadmium. Biology Bulletin, 42, 508-514. doi:10.1134/S1062359015060126

Wu, F., Zhang, G., Dominy, P. (2003). Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental Botany, 50, 67-78. doi:10.1016/S0098-8472(02)00113-2



  • There are currently no refbacks.

Copyright (c) 2018 Natalia Kaznina, Julia Batova, Natalia Repkina, Galina Laidinen, Alexandr Titov

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941