Field performance of cryopreserved seed-derived tomato plants and post-thaw survival of viral-infected meristems
Abstract
The effectiveness of different cryopreservation techniques of tomato meristems isolated from viral-infected plants ‘Irishka’ cultivar was determined. The pieces of stem were protected with dimethyl sulfoxide and propylene glycol and cooled in vapour phase of liquid nitrogen (–170 °C). For the vitrification and droplet-vitrification protocols, the meristems were treated with loading solution and dehydrated with different plant vitrification solutions (PVS1 modified, PVS2, 88 % PVS3, PVSN). The samples were placed to sterilized aluminum foil pieces, in 1.2 ml cryovials or in 50 µl aluminum pans for differential scanning calorimetry and were directly immersed into liquid nitrogen. Acсording to the dehydration technique, the meristems were dehydrated with sterile airflow for 120 min. The post-thaw survival rates of meristems (from 34.2 to 78.5 %) were observerved only for 50 µl aluminum pans and airflow dehydration. We determined the productivity of plants, obtaned from cryopreserved seeds (‘Seven’, ‘Potiron Ecarlate’ and ‘Druzhba’ cultivars). We observed increasing in total and marketable yields for the plants grown from the cryopreserved seeds for all the cultivars. Total number of diseased plants decreased by 33 % for ‘Seven’, for ‘Potiron Ecarlate’ it did by 6.7 %, for that of ‘Druzhba’ the total percentage of sick and healthy plants did not differ after seeds cryopreservation.
Keywords
Full Text:
PDFReferences
Acosta, Y., Hernandez, L., Mazorra, C., Quintana. N., Zevallos B. E., Cejas, I., . . . Fontes, D. (2019). Seed cryostorage enhances subsequent plant productivity in the forage species Teramnus Labialis (L.F.) Spreng. Cryo Letters, 40(1), 36–44.
Al-Abdallat, A. M., Shibli, R. A., Akash, M. W., Rabbaa, M., & Al-Qudah, T. (2017). In vitro preservation of transgenic tomato (Solanum lycopersicum L.) plants overexpressing the stress-related SlAREB1 transcription factor. International Journalof Molecular Science, 18(7), 1477. https://doi.org/10.3390/ijms18071477
AlDalain, E., Bondar, O. S., Tymchyshyn, O. V., Shevchenko, T. P., Budzanivska, I. G., & Polishchuk, V. P. (2014). Several viral diseases of Lycopersicon esculentum circulating in Ukraine. Bulletin of Taras Shevchenko National University of Kyiv: Biology, 68(3), 96–98. https://doi.org/10.17721/1728_2748.2014.68.96-98
Arguedas, M., Villalobos, A., Gómez, D., Hernández, L., Zevallos, B. E., Cejas, I., . . Lorenzo, J. C. (2018). Field performance of cryopreserved seed-derived maize plants. CryoLetters, 39(6), 366–370.
Ballesteros, D, &Pence, V. C. (2017). Survival and death of sees during liquid nitrogen storage: a case study on seeds with short lifespans. CryoLetters, 38(4), 278–289.
Cejas, I., Vives, K., Laudat, T., González-Olmedo, J., Engelmann, F., Martínez-Montero, M. E., & Lorenzo, J. C. (2012). Effects of cryopreservation of Phaseolus vulgaris L. seeds on early stages of germination. Plant Cell Reports, 31, 2065–2073. https://doi.org/10.1007/s00299-012-1317-x
Coste, A., Suteu, D., Bacila, I., Deliu, C., Valimareanu, S., & Halmagyi, A (2015). Genetic integrity assessment of cryopreserved tomato (Lycopersicon esculentum Mill.) genotypes. Turkish Journal of Biology, 39(4), 638–648. https://doi.org/10.3906/biy-1411-6
Grout, B. W. W., Westcott, J., & Henshaw, G. G. (1978). Survival of shoot meristems of tomato seedlings frozen in liquid nitrogen. Cryobiology, 15(4), 478–483. https://doi.org/10.1016/0011-2240 (78)90068-8
Grout, B. W. W & Crisp, P. C. (1995). Cryopreservation of germplasm of tomato. Biotechnology in Agriculture and Forestry, 32, 371–380. https://doi.org/10.1007/978-3-662-03096-7_26
Kil, E. J., Kim, S., Lee, Y. J., Byun, H. S., Park, J., Seo, H., . . . . . . Lee, S. (2016). Tomato yellow leaf curl virus (TYLCV-IL): a seed-transmissible geminivirus in tomatoes. Sientific Reports, 6, 19013. https://doi.org/10.1038/srep19013
Kulus, D. (2019). Managing plant genetic resources using low and ultra-low temperature storage: a case study of tomato. Biodiversity and Conservation, 28(5), 1003–1027. https://doi.org/10.1007/s10531-019-01710-1
Li, R., Baysal-Gurel, F., Abdo, Z., Miller, S. A., & Ling, K. S. (2015). Evaluation of disinfectants to prevent mechanical transmission of viruses and a viroid in greenhouse tomato production. Virology Journal, 12, 5. https://doi.org/10.1186/s12985-014-0237-5
Liu, X. X., Mou, S. W., & Cheng, Z. H. (2019). Effect of cryopreservation on plant growth, bulb characteristics and virus reduction of garlic (Allium sativum L.). CryoLetters, 40(6), 322–332.
Montoya, J. E., Escobar Pérez, R. H., & Debouck, D. G. (2000). Development of a freezing methodology in liquid nitrogen of tree tomato (Cyphomandra betacea (Cav.) Sendt) seeds. Centro Internacional de Agricultura Tropical, Cali. 6 p.
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Nishizawa, S., Sakai, A., Amano, Y., & Matsuzawa, T. (1993). Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Science, 91(1), 67–73. https://doi.org/10.1016/0168-9452(93)90189-7
Hee Shin, J., Kyoon Kang, D., & Keun Sohn, J. (2013). Production of yam mosaic virus (YMV)-free Dioscorea opposita plants by cryotherapy of shoot-tips. CryoLetters, 34(2), 149–157.
Zevallos, B., Cejas, I., Rodríguez, R. C., Yabor, L., Aragón, C., González, J., ... & Lorenzo, J. C. (2016). Biochemical characterization of Ecuadorian wild Solanum lycopersicum Mill. plants produced from non-cryopreserved and cryopreserved seeds. CryoLetters, 37(4), 413–421.
Vieira, R. L., da Silva, A. L., Zaffari, G. R., Steinmacher, D. A., de Freitas Fraga, H. P., & Guerra, M. P. (2015). Efficient elimination of virus complex from garlic (Allium sativum L.) by cryotherapy of shoot tips. Acta Physiologiae Plantarum, 37(1), 1733. https://doi.org/10.1007/s11738-014-1733-3
Vilardo, A. F. R. M., Mendonça, T. F., Engelmann, F., Cordeiro, L. S., Albarello, N., & Simões-Gurgel, C. (2019). Cryopreservation of in vitro-grown shoot tips of the medicinal species Cleome spinosa (Cleomaceae) applying vitrification-based techniques. Cryoletters, 40(4), 237–246.
Vitsenia, T. I., Ivchenko, T. V., Shevchenko, N. O., & Stribul, T. F. (2015). Effect of explant’s size and phytohormonal composition of nutritive medium on post-vitrification recovery of garlic meristems. Problems of Cryobiology and Cryomedicine, 25(1), 3–12. https://doi.org/10.15407/cryo25.01.003
Wang, M. R., Hao, X. Y., Zhao, L., Cui, Z. H., Volk, G. M., & Wang, Q. C. (2018). Virus infection reduces shoot proliferation of in vitro stock cultures and ability of cryopreserved shoot tips to regenerate into normal shoots in ‘Gala’ apple (Malus× domestica). Cryobiology, 84, 52–58. https://doi.org/10.1016/j.cryobiol.2018.08.002
Wang, Q., Liu, Y., Xie, Y., & You, M. (2006). Cryotherapy of potato shoot tips for efficient elimination of potato leafroll virus (PLRV) and potato virus Y (PVY). Potato Research, 49(2), 119–129. https://doi.org/10.1007/s11540-006-9011-4
Wang, Q. C., & Valkonen, J. P. T. (2008). Efficient elimination of sweetpotato little leaf phytoplasma from sweetpotato by cryotherapy of shoot tips. Plant Pathology, 57(2), 338–347. https://doi.org/10.1111/j.1365-3059.2007.01710.x
Wang, Q., & Valkonen, J. (2009). Improved recovery of cryotherapy-treated shoot tips following thermotherapy of in vitro-grown stock shoots of raspberry (Rubus idaeus L.). CryoLetters, 30(3), 171–182.
DOI: http://dx.doi.org/10.14720/aas.2022.118.4.1823
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Nadiia SHEVCHENKO, Tetiana MIROSHNICHENKO, Anna MOZGOVSKA, Nataliia BASHTAN, Galyna KOVALENKO, Tetiana IVCHENKO
Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.
eISSN 1854-1941