Uspevanje paradižnika v poljskem poskusu, vzgojenega iz zamrznjenih semen in preživetje z virusi okuženih meristemov po odtajanju

Nadiia SHEVCHENKO, Tetiana MIROSHNICHENKO, Anna MOZGOVSKA, Nataliia BASHTAN, Galyna KOVALENKO, Tetiana IVCHENKO

Povzetek


V raziskavi je bila določena učinkovitost različnih metod shranjevanja meristemov paradižnika z zamrzovanjem, pridobljenih iz z virusi okužene sorte ‘Irishka’. Koščki stebel so bili zaščiteni z dimetil sulfoksidom in propilen glikolom in ohlajeni v parah tekočega dušika (–170 °C). Za vitrifikacijo je bil uporabljen protokol kapljične vitrifikacije, meristemi so bili obdelani s standardno nosilno raztopino in dehidrirani z različnimi vitrifikacijskimi raztopinami za rastlinska tkiva (modificirana PVS1, PVS2, 88 % PVS3, PVSN). Vzorci so bili potem položeni na koščke sterilizirane aluminijeve folije v 1,2 ml epruvetkah za zmrzovanje ali v 50 µl aluminijastih posodicah za diferencialno vrstično kalorimetrijo, nakar so bili neposredno potopljeni v tekoči dušik. Glede na dehidracijske tehnike so bili vzorci dehidrirani s sterilnim zrakom za 120 min. Preživetje meristemov po odtajanju (od 34,2 do 78,5 %) je bilo opazovano samo za tiste v 50 µl aluminijastih posodicah, ki so bili dehidrirani z zračnim tokom. Določena je bila produktivnost obravnavanih sort, pridobljenih iz semen, shranjenih z zmrzovanjem (‘Seven’, ‘Potiron Ecarlate’ in ‘Druzhba’). Za vse sorte, ki so bile vzgojene iz semen, shranjenih z zmrzovanjem, je bilo ugotovljeno povečanje celokupnega in tržnega pridelka. Število okuženih rastlin, vzgojenih iz semen po shranjevanju z zmrzovanjem, se je za sorto ‘Seven’ povečalo za 33 % in za sorto ‘Potiron Ecarlate’ za 6,7 %. Pri sorti ‘Druzhba’ se celoten odstotek okuženih in zdravih rastlin ni razlikoval po shranjevanju semen z zmrzovanjem.


Ključne besede


shranjevanje semen in meristemov z zmrzovanjem; dehidracija; raztopine za vitrifikacijo rastlinskih tkiv; Solanum lycopersicum L.; pridelek

Celotno besedilo:

PDF (English)

Literatura


Acosta, Y., Hernandez, L., Mazorra, C., Quintana. N., Zevallos B. E., Cejas, I., . . . Fontes, D. (2019). Seed cryostorage enhances subsequent plant productivity in the forage species Teramnus Labialis (L.F.) Spreng. Cryo Letters, 40(1), 36–44.

Al-Abdallat, A. M., Shibli, R. A., Akash, M. W., Rabbaa, M., & Al-Qudah, T. (2017). In vitro preservation of transgenic tomato (Solanum lycopersicum L.) plants overexpressing the stress-related SlAREB1 transcription factor. International Journalof Molecular Science, 18(7), 1477. https://doi.org/10.3390/ijms18071477

AlDalain, E., Bondar, O. S., Tymchyshyn, O. V., Shevchenko, T. P., Budzanivska, I. G., & Polishchuk, V. P. (2014). Several viral diseases of Lycopersicon esculentum circulating in Ukraine. Bulletin of Taras Shevchenko National University of Kyiv: Biology, 68(3), 96–98. https://doi.org/10.17721/1728_2748.2014.68.96-98

Arguedas, M., Villalobos, A., Gómez, D., Hernández, L., Zevallos, B. E., Cejas, I., . . Lorenzo, J. C. (2018). Field performance of cryopreserved seed-derived maize plants. CryoLetters, 39(6), 366–370.

Ballesteros, D, &Pence, V. C. (2017). Survival and death of sees during liquid nitrogen storage: a case study on seeds with short lifespans. CryoLetters, 38(4), 278–289.

Cejas, I., Vives, K., Laudat, T., González-Olmedo, J., Engelmann, F., Martínez-Montero, M. E., & Lorenzo, J. C. (2012). Effects of cryopreservation of Phaseolus vulgaris L. seeds on early stages of germination. Plant Cell Reports, 31, 2065–2073. https://doi.org/10.1007/s00299-012-1317-x

Coste, A., Suteu, D., Bacila, I., Deliu, C., Valimareanu, S., & Halmagyi, A (2015). Genetic integrity assessment of cryopreserved tomato (Lycopersicon esculentum Mill.) genotypes. Turkish Journal of Biology, 39(4), 638–648. https://doi.org/10.3906/biy-1411-6

Grout, B. W. W., Westcott, J., & Henshaw, G. G. (1978). Survival of shoot meristems of tomato seedlings frozen in liquid nitrogen. Cryobiology, 15(4), 478–483. https://doi.org/10.1016/0011-2240 (78)90068-8

Grout, B. W. W & Crisp, P. C. (1995). Cryopreservation of germplasm of tomato. Biotechnology in Agriculture and Forestry, 32, 371–380. https://doi.org/10.1007/978-3-662-03096-7_26

Kil, E. J., Kim, S., Lee, Y. J., Byun, H. S., Park, J., Seo, H., . . . . . . Lee, S. (2016). Tomato yellow leaf curl virus (TYLCV-IL): a seed-transmissible geminivirus in tomatoes. Sientific Reports, 6, 19013. https://doi.org/10.1038/srep19013

Kulus, D. (2019). Managing plant genetic resources using low and ultra-low temperature storage: a case study of tomato. Biodiversity and Conservation, 28(5), 1003–1027. https://doi.org/10.1007/s10531-019-01710-1

Li, R., Baysal-Gurel, F., Abdo, Z., Miller, S. A., & Ling, K. S. (2015). Evaluation of disinfectants to prevent mechanical transmission of viruses and a viroid in greenhouse tomato production. Virology Journal, 12, 5. https://doi.org/10.1186/s12985-014-0237-5

Liu, X. X., Mou, S. W., & Cheng, Z. H. (2019). Effect of cryopreservation on plant growth, bulb characteristics and virus reduction of garlic (Allium sativum L.). CryoLetters, 40(6), 322–332.

Montoya, J. E., Escobar Pérez, R. H., & Debouck, D. G. (2000). Development of a freezing methodology in liquid nitrogen of tree tomato (Cyphomandra betacea (Cav.) Sendt) seeds. Centro Internacional de Agricultura Tropical, Cali. 6 p.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nishizawa, S., Sakai, A., Amano, Y., & Matsuzawa, T. (1993). Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Science, 91(1), 67–73. https://doi.org/10.1016/0168-9452(93)90189-7

Hee Shin, J., Kyoon Kang, D., & Keun Sohn, J. (2013). Production of yam mosaic virus (YMV)-free Dioscorea opposita plants by cryotherapy of shoot-tips. CryoLetters, 34(2), 149–157.

Zevallos, B., Cejas, I., Rodríguez, R. C., Yabor, L., Aragón, C., González, J., ... & Lorenzo, J. C. (2016). Biochemical characterization of Ecuadorian wild Solanum lycopersicum Mill. plants produced from non-cryopreserved and cryopreserved seeds. CryoLetters, 37(4), 413–421.

Vieira, R. L., da Silva, A. L., Zaffari, G. R., Steinmacher, D. A., de Freitas Fraga, H. P., & Guerra, M. P. (2015). Efficient elimination of virus complex from garlic (Allium sativum L.) by cryotherapy of shoot tips. Acta Physiologiae Plantarum, 37(1), 1733. https://doi.org/10.1007/s11738-014-1733-3

Vilardo, A. F. R. M., Mendonça, T. F., Engelmann, F., Cordeiro, L. S., Albarello, N., & Simões-Gurgel, C. (2019). Cryopreservation of in vitro-grown shoot tips of the medicinal species Cleome spinosa (Cleomaceae) applying vitrification-based techniques. Cryoletters, 40(4), 237–246.

Vitsenia, T. I., Ivchenko, T. V., Shevchenko, N. O., & Stribul, T. F. (2015). Effect of explant’s size and phytohormonal composition of nutritive medium on post-vitrification recovery of garlic meristems. Problems of Cryobiology and Cryomedicine, 25(1), 3–12. https://doi.org/10.15407/cryo25.01.003

Wang, M. R., Hao, X. Y., Zhao, L., Cui, Z. H., Volk, G. M., & Wang, Q. C. (2018). Virus infection reduces shoot proliferation of in vitro stock cultures and ability of cryopreserved shoot tips to regenerate into normal shoots in ‘Gala’ apple (Malus× domestica). Cryobiology, 84, 52–58. https://doi.org/10.1016/j.cryobiol.2018.08.002

Wang, Q., Liu, Y., Xie, Y., & You, M. (2006). Cryotherapy of potato shoot tips for efficient elimination of potato leafroll virus (PLRV) and potato virus Y (PVY). Potato Research, 49(2), 119–129. https://doi.org/10.1007/s11540-006-9011-4

Wang, Q. C., & Valkonen, J. P. T. (2008). Efficient elimination of sweetpotato little leaf phytoplasma from sweetpotato by cryotherapy of shoot tips. Plant Pathology, 57(2), 338–347. https://doi.org/10.1111/j.1365-3059.2007.01710.x

Wang, Q., & Valkonen, J. (2009). Improved recovery of cryotherapy-treated shoot tips following thermotherapy of in vitro-grown stock shoots of raspberry (Rubus idaeus L.). CryoLetters, 30(3), 171–182.




DOI: http://dx.doi.org/10.14720/aas.2022.118.4.1823

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2022 Nadiia SHEVCHENKO, Tetiana MIROSHNICHENKO, Anna MOZGOVSKA, Nataliia BASHTAN, Galyna KOVALENKO, Tetiana IVCHENKO

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941