Fruit collapse incidence and quality of pineapple as affected by biopesticides based on Pseudomonas fluorescens and Trichoderma harzianum
Abstract
In this study the effect of Pseudomonas fluorescens and Trichoderma harzianum based biopesticides on fruit collapse disease incidence and pineapple quality was investigated. The experiment was implemented in a split-plot design with two factors, one involving two inoculation methods (spray and inject), and a second factor involving four treatments, A (control: no biopesticides used), B (Bio P32 from 13 weeks before harvest), C (Bio T10 from 13 weeks before harvest) and D (Bio P32 + Bio T10 from 13 weeks before harvest). The inoculated pathogen was Dickeya zeae. The incidence of fruit collapse, total soluble solids, total acidity, sucrose, ascorbic acid, mineral content, and electrolyte leakage were determined. The inject method caused more fruit collapse incidence than the spray method. Treatments C and D provided the best results having a low incidence of fruit collapse (spray: 5 and 1.7 %, inject: 20 % in both cases), high antioxidant capacity (regarding ascorbic acid), high mineral nutrient content (in terms of Ca and Mg), and low electrolyte leakage content (< 70 % in average), with a healthier cell wall characteristic. Meanwhile, treatments A and B were less efficient in these aspects and promoted the incidence of fruit collapse, especially when the inject method was used, as this was more harmful regarding the fruit physiology. In conclusion, the biopesticides employed can reduce the incidence of fruit collapse and positively affect the fruit quality.
Keywords
Full Text:
PDFReferences
Aeny, T. N., Suharjo, R., Ginting, C., Hapsoro, D. W. I., & Niswati, A. (2020). Characterization and host range assessment of Dickeya zeae associated with pineapple soft rot disease in east Lampung, Indonesia. Biodiversitas, 21(2), 587–595. https://doi.org/10.13057/biodiv/d210221
Akram, N. A., Shafiq, F., & Ashraf, M. (2017). Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science, 8, 1–5. https://doi.org/10.3389/fpls.2017.00613
Barral, B., Chillet, M., Minier, J., Léchaudel, M., & Schorr-Galindo, S. (2017). Evaluating the response to Fusarium ananatum inoculation and antifungal activity of phenolic acids in pineapple. Fungal Biology, 121(12), 1045–1053. https://doi.org/10.1016/j.funbio.2017.09.002
Bartholomew, D. P., & Sanewski, G. M. (2018). Inflorescence and Fruit Development and Yield. In G. M. Sanewski, D. P. Bartholomew, & R. E. Paull (Eds.), The pineapple: botany, production and uses (pp. 223–268). London, UK: CABI Publishing. https://doi.org/10.1079/9781786393302.0233
Benton-Jones, J. J. (2001). Laboratory guide for conducting soil tests and plant analysis. New York, USA: CRC Press. https://doi.org/10.1201/9781420025293
Bin Thalip, Amar Ahmadi, Tong P.S., & Casey Ng. (2015). The MD2 “Super Sweet” pineapple (Ananas comosus). Utar Agriculture Science Journal, 1(4), 14–17.
Cano-Reinoso, D. M., Soesanto, L., Kharisun, & Wibowo, C. (2021). Review: Fruit collapse and heart rot disease in pineapple: Pathogen characterization , ultrastructure infections of plant and cell mechanism resistance. Biodiversitas, 22(5), 2477–2488. https://doi.org/10.13057/biodiv/d220504
Cano-Reinoso, D. M., Soesanto, L. Kharisun, & Wibowo, C. (2022a). Effect of pre-and postharvest treatments with salicylic acid on physicochemical properties of pineapple cv. MD2. Chiang Mai University Journal of Natural Sciences, 21(3), e2022039. https://doi.org/10.12982/CMUJNS.2022.039
Cano-Reinoso, D. M., Kharisun, K., Soesanto, L., & Wibowo, C. (2022b). Effect of calcium and silicon fertilization after flowering on pineapple mineral status and flesh translucency. Plant Physiology Reports, 27(1), 96–108. https://doi.org/10.1007/s40502-022-00651-2
Carillo, P., Woo, S. L., Comite, E., El-nakhel, C., Rouphael, Y., Fusco, G. M., Borzacchiello, A., Lanzuise, S., & Vinale, F. (2020). Application of Trichoderma harzianum, 6-pentyl-α-pyrone and plant biopolymer formulations modulate plant metabolism and fruit quality of plum tomatoes. Plants, 9(6), 1–15. https://doi.org/10.3390/plants9060771
Chen, C. C., & Paull, R. E. (2001). Fruit temperature and crown removal on the occurrence of pineapple fruit translucency. Scientia Horticulturae, 88(2), 85–95. https://doi.org/10.1016/S0304-4238(00)00201-6
Chen, N. J., & Paull, R. E. (2017). Production and postharvest handling of low acid hybrid pineapple. Acta Horticulturae, 1166, 25–34. https://doi.org/10.17660/ActaHortic.2017.1166.4
Chen, N. J., Paull, R. E., Chen, C. C., & Saradhuldhat, P. (2009). Pineapple production for quality and postharvest handling. Acta Horticulturae, 822, 253–260. https://doi.org/10.17660/ActaHortic.2009.822.31
De Freitas, S. T., & Resender Nassur, R. C. M. (2017). Calcium treatments. In S. Pareek (Ed.), Novel postharvest treatments of fresh produce (pp. 52–68). Boca Raton, USA: CRC Press. https://doi.org/10.1201/9781315370149-3
Demidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A., & Yurin, V. (2014). Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65(5), 1259–1270. https://doi.org/10.1093/jxb/eru004
Ding, P., & Syazwani, S. (2016). Physicochemical quality, antioxidant compounds and activity of MD-2 pineapple fruit at five ripening stages. International Food Research Journal, 23(2), 549–555.
Ferreira, E. A., Siqueira, H. E., Boas, E. V. V., Hermes, V. S., & Rios, A. de O. (2016). Compostos bioativos e atividade antioxidante de frutos de cultivares de abacaxizeiros. Revista Brasileira de Fruticultura, 38(3), 1–7. https://doi.org/10.1590/0100-29452016146
Gao, X., Cox, K. L., & He, P. (2014). Functions of calcium-dependent protein kinases in plant innate immunity. Plants, 3(1), 160–176. https://doi.org/10.3390/plants3010160
Garcia-Seco, D., Zhang, Y., Gutierrez-Mañero, F. J., Martin, C., & Ramos-Solano, B. (2015). Application of Pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS ONE, 10(11), 1–23. https://doi.org/10.1371/journal.pone.0142639
Hamarawati, E., Mugiastuti, E., Manan, A., Loekito, S., & Soesanto, L. (2017). Applications of Pseudomnas fluorescens P60 in Controlling Basal Stem Rot (Sclerotium rolfsii Sacc.) on Dragon Fruit Seedlings. Asian Journal of Plant Pathology, 12(1), 1–6. https://doi.org/10.3923/ajppaj.2018.1.6
Hocking, B., Tyerman, S. D., Burton, R. A., & Gilliham, M. (2016). Fruit calcium: Transport and physiology. Frontiers in Plant Science, 7, 1–17. https://doi.org/10.3389/fpls.2016.00569
Hu, H., Li, X., Dong, C., & Chen, W. (2012). Effects of wax treatment on the physiology and cellular structure of harvested pineapple during cold storage. Journal of Agricultural and Food Chemistry, 60(26), 6613–6619. https://doi.org/10.1021/jf204962z
Jiang, M. Y., Wang, Z. R., Chen, K. W., Kan, J. Q., Wang, K. T., Zalán, Z. S., Hegyi, F., Takács, K., & Du, M. Y. (2019). Inhibition of postharvest gray mould decay and induction of disease resistance by Pseudomonas fluorescens in grapes. Acta Alimentaria, 48(3), 288–296. https://doi.org/10.1556/066.2019.48.3.2
Kleemann, L. (2016). Organic Pineapple Farming in Ghana - A Good Choice for Smallholders? The Journal of Developing Areas, 50(3), 109–130. https://doi.org/10.1353/jda.2016.0096
Lu, X. H., Sun, D. Q., Wu, Q. S., Liu, S. H., & Sun, G. M. (2014). Physico-chemical properties, antioxidant activity and mineral contents of pineapple genotypes grown in China. Molecules, 19(6), 8518–8532. https://doi.org/10.3390/molecules19068518
Madani, B., Mirshekari, A., Sofo, A., & Tengku Muda Mohamed, M. (2016). Preharvest calcium applications improve postharvest quality of papaya fruits (Carica papaya L. cv. Eksotika II). Journal of Plant Nutrition, 39(10), 1483–1492. https://doi.org/10.1080/01904167.2016.1143500
Martínez, J. I., Gómez-Garrido, M., Gómez-López, M. D., Faz, Á., Martínez-Martínez, S., & Acosta, J. A. (2019). Pseudomonas fluorescens affects nutrient dynamics in plant-soil system for melon production. Chilean Journal of Agricultural Research, 79(2), 223–233. https://doi.org/10.4067/S0718-58392019000200223
Meeteren, U. V., & Aliniaeifard, S. (2016). Stomata and postharvest physiology. In S. Pareek (Ed.), Postharvest ripening physiology of crops (pp. 157–216). Boca Raton, USA: CRC Press.
Morkunas, I., & Ratajczak, L. (2014). The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiologiae Plantarum, 36(7), 1607–1619. https://doi.org/10.1007/s11738-014-1559-z
Nadzirah, K. Z., Zainal, S., Noriham, A., Siti Roha, A. M., & Nadya, H. (2013). Physico- chemical properties of pineapple variety N36 harvested and stored at different maturity stages. International Food Research Journal, 20(1), 225–231.
Naseem, M., Kunz, M., & Dandekar, T. (2017). Plant–Pathogen Maneuvering over Apoplastic Sugars. Trends in Plant Science, 22(9), 740–743. https://doi.org/10.1016/j.tplants.2017.07.001
Noichinda, S., Bodhipadma, K., & Wongs-Aree, C. (2017). Antioxidant Potential and Their changes during postharvest handling of tropical fruits. In S. Pareek (Ed.), Novel Postharvest Treatments of Fresh produce (pp. 633–662). Boca Raton, USA: CRC Press. https://doi.org/10.1201/9781315370149-20
Paull, R. ., & Chen, C. C. (2003). Postharvest Physiology, Handling and Storage of Pineapple. In D. P. Bartholomew, R. E. Paull, & K. G. Rohrbach (Eds.), The pineapple: botany, production and uses (pp. 253–279). London, UK: CABI Publishing. https://doi.org/10.1079/9780851995038.0253
Paull, R. E., & Chen, C. C. (2018). Postharvest Physiology, Handling and Storage of Pineapple. In G. M. Sanewski, D. P. Bartholomew, & R. E. Paull (Eds.), The pineapple: botany, production and uses (pp. 295–323). London, UK: CABI Publishing. https://doi.org/10.1079/9781786393302.0295
Peckham, G. D., Kaneshiro, W. S., Luu, V., Berestecky, J. M., & Alvarez, A. M. (2010). Specificity of monoclonal antibodies to strains of Dickeya sp. that cause bacterial heart rot of pineapple. Hybridoma, 29(5), 383–389. https://doi.org/10.1089/hyb.2010.0034
Pérez-Rodriguez, M. M., Pontin, M., Lipinski, V., Bottini, R., Piccoli, P., & Cohen, A. C. (2020). Pseudomonas fluorescens and Azospirillum brasilense Increase yield and fruit quality of tomato under field conditions. Journal of Soil Science and Plant Nutrition, 20(4), 1614–1624. https://doi.org/10.1007/s42729-020-00233-x
Pires de Matos, A. (2019). Main pests affecting pineapple plantations and their impact on crop development. Acta Horticulturae, 1239, 137–145. https://doi.org/10.17660/ActaHortic.2019.1239.17
Rohrbach, K. G., & Johnson, M. W. (2003). Pests, diseases and weeds. In D. P. Bartholomew, R. E. Paull, & K. G. Rohrbach (Eds.), The pineapple: botany, production and uses (pp. 203–251). London, UK: CABI Publishing. https://doi.org/10.1079/9780851995038.0203
Saradhuldhat, P., & Paull, R. E. (2007). Pineapple organic acid metabolism and accumulation during fruit development. Scientia Horticulturae, 112(3), 297–303. https://doi.org/10.1016/j.scienta.2006.12.031
Shamsudin, R., Zulkifli, N. A., & Kamarul Zaman, A. A. (2020). Quality attributes of fresh pineapple-mango juice blend during storage. International Food Research Journal, 27(1), 141–149.
Sipes, B., & Pires de Matos, A. (2018). Pests, diseases and weeds. In G. M. Sanewski, D. P. Bartholomew, & R. E. Paull (Eds.), The pineapple: botany, production and uses (pp. 269–294). London, UK: CABI Publishing. https://doi.org/10.1079/9781786393302.0269
Siti Roha, A. M., Zainal, S., Noriham, A., & Nadzirah, K. Z. (2013). Determination of sugar content in pineapple waste variety N36. International Food Research Journal, 20(4), 1941–1943.
Soesanto, L., Mugiastuti, E., & Rahayuniati, R. F. (2011). Biochemical characteristic of Pseudomonas fluorescens P60. Journal of Biotechnology and Biodiversity, 2, 19–26.
Soesanto, Loekas, Mugiastuti, E., & Khoeruriza. (2019). Granular formulation test of Pseudomonas fluorescens P60 for controling bacterial wilt (Ralstonia solanacearum) of tomato in planta. Agrivita, 41(3), 513–523. https://doi.org/10.17503/agrivita.v41i3.2318
Soesanto, Loekas, Mugiastuti, E., Rahayuniati, R. F., Manan, A., Dewi, R. S., Java, C., & Java, C. (2018). Compatibility test of four Trichoderma spp. isolates on several synthetic pesticides. AGRIVITA, Journal of Agricultural Science, 40(3), 481–489. https://doi.org/10.17503/agrivita.v40i3.1126
Soesanto, Loekas, Solikhah, A. N., Mugiastuti, E., & Suharti, W. S. (2020). Application of Trichoderma harzianum T10 liquid formula based on soybean flour against cucumber seedlings damping-off (Pythium sp.). Akta Agrosia, 23(1), 11–18.
Sood, M., Kapoor, D., Kumar, V., & Sheteiwy, M. S. (2020). Trichoderma :The “Secrets” of a Multitalented. Plants, 9, 762. https://doi.org/10.3390/plants9060762
Soteriou, G. A., Kyriacou, M. C., Siomos, A. S., & Gerasopoulos, D. (2014). Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chemistry, 165, 282–289. https://doi.org/10.1016/j.foodchem.2014.04.120
Sueno, W. S. K., Marrero, G., de Silva, A. S., Sether, D. M., & Alvarez, A. M. (2014). Diversity of dickeya strains collected from pineapple plants and irrigation water in Hawaii. Plant Disease, 98(6), 817–824. https://doi.org/10.1094/PDIS-03-13-0219-RE
Wang, Y., Fu, X. Z., Liu, J. H., & Hong, N. (2011). Differential structure and physiological response to canker challenge between ‘Meiwa’ kumquat and ‘Newhall’ navel orange with contrasting resistance. Scientia Horticulturae, 128(2), 115–123. https://doi.org/10.1016/j.scienta.2011.01.010
Yamada, K., Saijo, Y., Nakagami, H., & Takano, Y. (2016). Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science, 354(6318), 1427–1430. https://doi.org/10.1126/science.aah5692
DOI: http://dx.doi.org/10.14720/aas.2022.118.3.2485
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Diego Mauricio CANO-REINOSO, Loekas SOESANTO , KHARISUN, Condro WIBOWO
Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.
eISSN 1854-1941