Who lives in our dishwasher? Preliminar results of fungal metagenomic analysis of household dishwashers

Simon KOREN, Minka KOVAČ, Nataša TOPLAK

Abstract


In the last few years the advances in molecular biological methods, especially the development of next generation sequencing, have drastically changed and improved our view of microbial world. Progress in new molecular techniques enables us to overcome potential disadvantages of traditional microbiological techniques in fungal community identifications. It also enables us to evaluate the richness of fungal populations more efficiently and reliably. In the present study, we used the Ion Torrent PGM next generation sequencing platform to analyse fungi present in ordinary household dishwashers. The identification was based on massive parallel sequencing of the D2 LSU rRNA amplicon. The analysis revealed rich and diverse fungal communities present in our dishwashers. Interpretation of the results was based on previously published research by Zalar et al. (2011). The results of our study confirmed that the new technology in many ways surpasses classical methods used in fungal analysis by offering quicker, reliable, more sensitive and inexpensive high-throughput identification of microorganisms in entire communities.

Keywords


molecular biology; molecular techniques; fungi; metagenomics; next generation sequencing; Ion Torrent PGM; household dishwashers

Full Text:

PDF

References


Amend A.S., Seifert K.A., Samson R., Bruns T.D. 2010. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci U S A, 107: 13748–13753. doi:10.1073/pnas.1000454107

Beumer R.R., Kusumaningrum H. 2003. Kitchen hygiene in daily life. Int Biodeterior Biodegrad, 51: 299–302. doi:10.1016/S0964-8305(03)00041-6

Brown S.P., Callaham M.A., Oliver A.K., Jumpponen A. 2013. Deep Ion Torrent sequencing identifies soil fungal community shifts after frequent prescribed fires in a southeastern US forest ecosystem. FEMS Microbiol Ecol., 86: 557–566. doi:10.1111/1574-6941.12181

Bundy K.W., Gent J.F., Beckett W., Bracken M.B., Belanger K., Triche E., Leaderer B.P. 2009. Household airborne Penicillium associated with peak expiratory flow variability in asthmatic children. Ann Allergy Asthma Immunol, 103: 26–30. doi:10.1016/S1081-1206(10)60139-1

Feazel L.M., Baumgartner L.K., Peterson K.L., Frank D.N., Harris J.K., Pace N.R. 2009. Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci U S A, 106: 16393–16399. doi:10.1073/pnas.0908446106

Frisvad J.C., Smedsgaard J., Larsen T.O., Samson R.A. 2004. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol., 49: 201–241

Geml J., Pastor N., Fernandez L., Pacheco S., Semenova T.A., Becerra A.G., Wicaksono C.Y., Nouhra E.R. 2014. Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol., 23: 2452–2472. doi:10.1111/mec.12765

Gonçalves F.A.G., Colen G., Takahashi J.A. 2014. Yarrowia lipolytica and its multiple applications in the biotechnological industry. ScientificWorld Journal, 2014: 476207. doi:10.1155/2014/476207

Gostinčar C., Grube M., Gunde-Cimerman N. 2011. Evolution of fungal pathogens in domestic environments? Fungal Biol., 115: 1008–1018. doi:10.1016/j.funbio.2011.03.004

Gottel N.R., Castro H.F., Kerley M., Yang Z., Pelletier D.A., Podar M., Karpinets T., Uberbacher E., Tuskan G.A., Vilgalys R., et al. 2011. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol., 77: 5934–5944. doi:10.1128/AEM.05255-11

De Hoog G.S., Guarro J., Gené J., Figueras M.J. 2000. Atlas of clinical fungi, viii + 1126 p.

De Hoog G.S., Vicente V.A., Najafzadeh M.J., Harrak M.J., Badali H., Seyedmousavi S. 2011. Waterborne Exophiala species causing disease in cold-blooded animals. Persoonia Mol Phylogeny Evol Fungi, 27: 46–72. doi:10.3767/003158511X614258

Kemler M., Garnas J., Wingfield M.J., Gryzenhout M., Pillay K.-A., Slippers B. 2013. Ion Torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity. PloS One, 8: e81718. doi:10.1371/journal.pone.0081718

Khan J.A., Hussain S.T., Hasan S., McEvoy P., Sarwari A., others. 2000. Disseminated Bipolaris infection in an immunocompetent host: an atypical presentation. J Pak Med Assoc., 50: 68–71

Kruys A., Eriksson O.E., Wedin M. 2006. Phylogenetic relationships of coprophilous Pleosporales (Dothideomycetes, Ascomycota), and the classification of some bitunicate taxa of unknown position. Mycol Res., 110: 527–536. doi:10.1016/j.mycres.2006.03.002

Lekberg Y., Schnoor T., Kjøller R., Gibbons S.M., Hansen L.H., Al-Soud W.A., Sørensen S.J., Rosendahl S. 2012. 454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. J Ecol., 100: 151–160. doi:10.1111/j.1365-2745.2011.01894.x

Lian X., de Hoog G.S. 2010. Indoor wet cells harbour melanized agents of cutaneous infection. Med Mycol., 48: 622–628. doi:10.3109/13693780903405774

Murphy A., Kavanagh K. 1999. Emergence of Saccharomyces cerevisiae as a human pathogen: Implications for biotechnology. Enzyme Microb Technol., 25: 551–557. doi:10.1016/S0141-0229(99)00086-1

Nishiuchi Y., Tamura A., Kitada S., Taguri T., Matsumoto S., Tateishi Y., Yoshimura M., Ozeki Y., Matsumura N., Ogura H., Maekura R. 2009. Mycobacterium avium complex organisms predominantly colonize in the bathtub inlets of patients‘ bathrooms. Jpn J Infect Dis., 62: 182–186

O‘Hollaren M.T., Yunginger J.W., Offord K.P., Somers M.J., O‘Connell E.J., Ballard D.J., Sachs M.I. 1991. Exposure to an aeroallergen as a possible precipitating factor in respiratory arrest in young patients with asthma. N Engl J Med., 324: 359–363. doi:10.1056/NEJM199102073240602

Ojima M., Toshima Y., Koya E., Ara K., Tokuda H., Kawai S., Kasuga F., Ueda N. 2002. Hygiene measures considering actual distributions of microorganisms in Japanese households. J Appl Microbiol., 93: 800–809. doi:10.1046/j.1365-2672.2002.01746.x

Ondov B.D., Bergman N.H., Phillippy A.M. 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics, 12: 385. doi:10.1186/1471-2105-12-385

Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464: 59–65. doi:10.1038/nature08821

Straus D.C. 2009. Molds, mycotoxins, and sick building syndrome. Toxicol Ind Health, 25: 617–635. doi:10.1177/0748233709348287

Tasić S., Miladinović-Tasić N. 2007. Cladosporium spp.: Cause of opportunistic mycoses. Acta Fac Medicae Naissensis, 24: 15–19

Thomas T., Gilbert J., Meyer F. 2012. Metagenomics – a guide from sampling to data analysis. Microb Inform Exp., 2: 3. doi:10.1186/2042-5783-2-3

Thrasher J.D., Crawley S. 2009. The biocontaminants and complexity of damp indoor spaces: more than what meets the eyes. Toxicol Ind Health, 25: 583–615. doi:10.1177/0748233709348386

Tonge D.P., Pashley C.H., Gant T.W. 2014. Amplicon-based metagenomic analysis of mixed fungal samples using proton release amplicon sequencing. PloS One, 9: e93849. doi:10.1371/journal.pone.0093849

Tringe S.G., von Mering C., Kobayashi A., Salamov A.A., Chen K., Chang H.W., Podar M., Short J.M., Mathur E.J., Detter J.C., et al. 2005. Comparative metagenomics of microbial communities. Science, 308: 554–557. doi:10.1126/science.1107851

Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., et al. 2009. A core gut microbiome in obese and lean twins. Nature, 457: 480–484. doi:10.1038/nature07540

Venter J.C., Remington K., Heidelberg J.F., Halpern A.L., Rusch D., Eisen J.A., Wu D., Paulsen I., Nelson K.E., Nelson W., et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304: 66–74. doi:10.1126/science.1093857

Watanabe M. 2008. Production of mycotoxins by Penicillium expansum inoculated into apples. J Food Prot., 71: 1714–1719

Zalar P., Novak M., de Hoog G.S., Gunde-Cimerman N. 2011. Dishwashers--a man-made ecological niche accommodating human opportunistic fungal pathogens. Fungal Biol., 115: 997–1007. doi:10.1016/j.funbio.2011.04.007

Zeng J.S., Sutton D.A., Fothergill A.W., Rinaldi M.G., Harrak M.J., de Hoog G.S. 2007. Spectrum of clinically relevant Exophiala species in the United States. J Clin Microbiol., 45: 3713–3720. doi:10.1128/JCM.02012-06




DOI: http://dx.doi.org/10.14720/aas.2015.106.1.1

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Acta agriculturae Slovenica

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941