Kdo živi v našem pomivalnem stroju? Preliminarni rezultati metagenomske analize gliv v gospodinjskih pomivalnih strojih

Simon KOREN, Minka KOVAČ, Nataša TOPLAK

Povzetek


Na področju metagenomike je napredek molekularno bioloških metod, predvsem razvoj naslednje generacije sekvenciranja, dramatično spremenil in razširil pogled na mikrobni svet. Napredek novih molekularnih tehnik nam omogoča premagovanje pomanjkljivosti tradicionalnih mikrobioloških tehnik, predvsem pri identifikacij populacij gliv. Z novim pristopom dobimo učinkovitejšo in zanesljivejšo ocenitev števila vrst gliv v določenih populacijah. V naši raziskavi smo uporabili tehnologijo naslednje generacije sekveniranja Ion Torrent za analizo prisotnosti gliv v gospodinjskih pomivalnih strojih. Identifikacija je temeljila na masivni paralelni določitvi nukleotidnega zaporedja podenote D2 LSU glivnega gena rRNA. S končno analizo smo potrdili bogate in raznolike skupnosti gliv v naših pomivalnih strojih, interpretacija rezultatov pa je temeljila na že objavljenih predhodnih raziskavah Zalarjeve in sod. (2011). Rezultati naše raziskave so potrdili, da nova tehnologija na mnogih področjih presega klasične mikrobiološke metode, ki se uporabljajo pri analizi skupnosti gliv in ponuja hitrejšo, zanesljivejšo, občutljivejšo ter cenejšo identifikacijo mikroorganizmov v skupnosti.

Ključne besede


molekularna biologija; molekularne tehnike; glive; metagenomika; naslednja generacija sekveniranja; Ion Torrent PGM; gospodinjski pomivalni stroji

Celotno besedilo:

PDF (English)

Literatura


Amend A.S., Seifert K.A., Samson R., Bruns T.D. 2010. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci U S A, 107: 13748–13753. doi:10.1073/pnas.1000454107

Beumer R.R., Kusumaningrum H. 2003. Kitchen hygiene in daily life. Int Biodeterior Biodegrad, 51: 299–302. doi:10.1016/S0964-8305(03)00041-6

Brown S.P., Callaham M.A., Oliver A.K., Jumpponen A. 2013. Deep Ion Torrent sequencing identifies soil fungal community shifts after frequent prescribed fires in a southeastern US forest ecosystem. FEMS Microbiol Ecol., 86: 557–566. doi:10.1111/1574-6941.12181

Bundy K.W., Gent J.F., Beckett W., Bracken M.B., Belanger K., Triche E., Leaderer B.P. 2009. Household airborne Penicillium associated with peak expiratory flow variability in asthmatic children. Ann Allergy Asthma Immunol, 103: 26–30. doi:10.1016/S1081-1206(10)60139-1

Feazel L.M., Baumgartner L.K., Peterson K.L., Frank D.N., Harris J.K., Pace N.R. 2009. Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci U S A, 106: 16393–16399. doi:10.1073/pnas.0908446106

Frisvad J.C., Smedsgaard J., Larsen T.O., Samson R.A. 2004. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol., 49: 201–241

Geml J., Pastor N., Fernandez L., Pacheco S., Semenova T.A., Becerra A.G., Wicaksono C.Y., Nouhra E.R. 2014. Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol., 23: 2452–2472. doi:10.1111/mec.12765

Gonçalves F.A.G., Colen G., Takahashi J.A. 2014. Yarrowia lipolytica and its multiple applications in the biotechnological industry. ScientificWorld Journal, 2014: 476207. doi:10.1155/2014/476207

Gostinčar C., Grube M., Gunde-Cimerman N. 2011. Evolution of fungal pathogens in domestic environments? Fungal Biol., 115: 1008–1018. doi:10.1016/j.funbio.2011.03.004

Gottel N.R., Castro H.F., Kerley M., Yang Z., Pelletier D.A., Podar M., Karpinets T., Uberbacher E., Tuskan G.A., Vilgalys R., et al. 2011. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol., 77: 5934–5944. doi:10.1128/AEM.05255-11

De Hoog G.S., Guarro J., Gené J., Figueras M.J. 2000. Atlas of clinical fungi, viii + 1126 p.

De Hoog G.S., Vicente V.A., Najafzadeh M.J., Harrak M.J., Badali H., Seyedmousavi S. 2011. Waterborne Exophiala species causing disease in cold-blooded animals. Persoonia Mol Phylogeny Evol Fungi, 27: 46–72. doi:10.3767/003158511X614258

Kemler M., Garnas J., Wingfield M.J., Gryzenhout M., Pillay K.-A., Slippers B. 2013. Ion Torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity. PloS One, 8: e81718. doi:10.1371/journal.pone.0081718

Khan J.A., Hussain S.T., Hasan S., McEvoy P., Sarwari A., others. 2000. Disseminated Bipolaris infection in an immunocompetent host: an atypical presentation. J Pak Med Assoc., 50: 68–71

Kruys A., Eriksson O.E., Wedin M. 2006. Phylogenetic relationships of coprophilous Pleosporales (Dothideomycetes, Ascomycota), and the classification of some bitunicate taxa of unknown position. Mycol Res., 110: 527–536. doi:10.1016/j.mycres.2006.03.002

Lekberg Y., Schnoor T., Kjøller R., Gibbons S.M., Hansen L.H., Al-Soud W.A., Sørensen S.J., Rosendahl S. 2012. 454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. J Ecol., 100: 151–160. doi:10.1111/j.1365-2745.2011.01894.x

Lian X., de Hoog G.S. 2010. Indoor wet cells harbour melanized agents of cutaneous infection. Med Mycol., 48: 622–628. doi:10.3109/13693780903405774

Murphy A., Kavanagh K. 1999. Emergence of Saccharomyces cerevisiae as a human pathogen: Implications for biotechnology. Enzyme Microb Technol., 25: 551–557. doi:10.1016/S0141-0229(99)00086-1

Nishiuchi Y., Tamura A., Kitada S., Taguri T., Matsumoto S., Tateishi Y., Yoshimura M., Ozeki Y., Matsumura N., Ogura H., Maekura R. 2009. Mycobacterium avium complex organisms predominantly colonize in the bathtub inlets of patients‘ bathrooms. Jpn J Infect Dis., 62: 182–186

O‘Hollaren M.T., Yunginger J.W., Offord K.P., Somers M.J., O‘Connell E.J., Ballard D.J., Sachs M.I. 1991. Exposure to an aeroallergen as a possible precipitating factor in respiratory arrest in young patients with asthma. N Engl J Med., 324: 359–363. doi:10.1056/NEJM199102073240602

Ojima M., Toshima Y., Koya E., Ara K., Tokuda H., Kawai S., Kasuga F., Ueda N. 2002. Hygiene measures considering actual distributions of microorganisms in Japanese households. J Appl Microbiol., 93: 800–809. doi:10.1046/j.1365-2672.2002.01746.x

Ondov B.D., Bergman N.H., Phillippy A.M. 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics, 12: 385. doi:10.1186/1471-2105-12-385

Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464: 59–65. doi:10.1038/nature08821

Straus D.C. 2009. Molds, mycotoxins, and sick building syndrome. Toxicol Ind Health, 25: 617–635. doi:10.1177/0748233709348287

Tasić S., Miladinović-Tasić N. 2007. Cladosporium spp.: Cause of opportunistic mycoses. Acta Fac Medicae Naissensis, 24: 15–19

Thomas T., Gilbert J., Meyer F. 2012. Metagenomics – a guide from sampling to data analysis. Microb Inform Exp., 2: 3. doi:10.1186/2042-5783-2-3

Thrasher J.D., Crawley S. 2009. The biocontaminants and complexity of damp indoor spaces: more than what meets the eyes. Toxicol Ind Health, 25: 583–615. doi:10.1177/0748233709348386

Tonge D.P., Pashley C.H., Gant T.W. 2014. Amplicon-based metagenomic analysis of mixed fungal samples using proton release amplicon sequencing. PloS One, 9: e93849. doi:10.1371/journal.pone.0093849

Tringe S.G., von Mering C., Kobayashi A., Salamov A.A., Chen K., Chang H.W., Podar M., Short J.M., Mathur E.J., Detter J.C., et al. 2005. Comparative metagenomics of microbial communities. Science, 308: 554–557. doi:10.1126/science.1107851

Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., et al. 2009. A core gut microbiome in obese and lean twins. Nature, 457: 480–484. doi:10.1038/nature07540

Venter J.C., Remington K., Heidelberg J.F., Halpern A.L., Rusch D., Eisen J.A., Wu D., Paulsen I., Nelson K.E., Nelson W., et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304: 66–74. doi:10.1126/science.1093857

Watanabe M. 2008. Production of mycotoxins by Penicillium expansum inoculated into apples. J Food Prot., 71: 1714–1719

Zalar P., Novak M., de Hoog G.S., Gunde-Cimerman N. 2011. Dishwashers--a man-made ecological niche accommodating human opportunistic fungal pathogens. Fungal Biol., 115: 997–1007. doi:10.1016/j.funbio.2011.04.007

Zeng J.S., Sutton D.A., Fothergill A.W., Rinaldi M.G., Harrak M.J., de Hoog G.S. 2007. Spectrum of clinically relevant Exophiala species in the United States. J Clin Microbiol., 45: 3713–3720. doi:10.1128/JCM.02012-06




DOI: http://dx.doi.org/10.14720/aas.2015.106.1.1

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2015 Acta agriculturae Slovenica

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941