Izražanje IRT1 gena v sejankah ječmena ob pomanjkanju cinka pri optimalnih in nizkih temperaturah

Natalia KAZNINA, Natalia REPKINA, Yulia BATOVA, Alexandr TITOV

Povzetek


Pomanjkanje ali prebitek cinka (Zn) povzročata negativne učinke na presnovo in razvoj rasttlin. Zaradi tega so rastline razvile dobro nadzorovan sistem, vključno s proteinskimi transporterji za uravnavanje privzema in porabe kovinskih ionov. V raziskavi je bilo analizirano izražanje HvIRT1 gena, ki kodira transmembranski protein IRT1 v poganjkih in koreninah ječmena (Hordeum vulgare ‘Nur’) ob pomankanju zinka pri optimalni (22 °C) in nizki (4 °C) temperaturi. Pomanjkanje cinka (0 μmol) je povzročilo povečano izražanje HvIRT1 gena pri optimalni kot pri nizki temperaturi. Razlika v vsebnosti mRNK HvIRT1 gena v koreninah ječmena v optimalnih razmerah in pri nizki temperaturi ni bila opažena, a kljub temu je bilo izražanje gena HvIRT1 v listih večje pri optimalni temperaturi v primerjavi s hladnimi rastnimi razmerami. Daljša izpostavitev (7 dni) nizki temperature je ob pomanjkanju cinka povzročila značilno zmanšanje transkriptov HvIRT1 v listih, kar ustreza upadu fotosinteze in akumulacije biomase. Ta odkritja nakazujejo, da igra HvIRT1 gen pomembno vlogo pri odzivu rastlin na pomanjkanje cinka tako v optimalnih razmerah kot pri nizkih temperaturah.


Ključne besede


IRT1; Hordeum vulgare; pomanjkanje cinka; nizke temperature

Celotno besedilo:

PDF (English)

Literatura


Brumbarova, T, Bauer, P, Ivanov, R (2015). Molecular mechanisms governing Arabidopsis iron uptake. Trends in Plant Science, 20(2), 124–133. https://doi.org/10.1016/j.tplants.2014.11.004

Giehl, R. F. H., Meda, A.R., von Wirén, N. (2009). Moving up, down, and everywhere: signaling of micronutrients in plants. Cur-rent Opinion in Plant Biology, 12, 320–327. https://doi.org/10.1016/j.pbi.2009.04.006

Grotz,N., Fox, T., Connolly, E., Park, W., Guerinot, M.L., Eide, D. (1998). Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National. Academy of Sciences USA, 95, 7220–7224. https://doi.org/10.1073/pnas.95.12.7220

Guerinot,M.L.(2000). The ZIP family of metal transporters. Biochimica et Biophysica Acta, 1465, 190–198. https://doi.org/10.1016/S0005-2736 (00)00138-3

Hacisalihoglu,G., Hart, J.J., Kochian, L.V. (2001). High- and low- affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiology, 125, 456–463. https://doi.org/10.1104/pp.125.1.456

Hajiboland, R., Beiramzadeh, N. (2008). Growth, gas exchange and function of antioxidant defense system in two contrasting rice genotypes under Zn and Fe deficiency and hypoxia. Acta Bioogica. Szegediensis, 52(2), 283–294. http://www.sci.u-szeged.hu/ABS

Ishimaru, Y., Suzuki, M., Tsukamoto, T., et al. (2006). Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+.The Plant Journal, 45, 335–346. https://doi.org/10.1111/j.1365-313X.2005.02624.x

Kabir, A. H., Hossain, M.M., Khatun, M.A., Sarkar, M.R., Haider, S.A. (2017). Biochemical and molecular mechanisms associated with Zn deficiency tolerance and signaling in rice (Oryza sativa L.). Journal of Plant Interactions, 12(1), 447–456. https://doi.org/10.1080/17429145.2017.1392626

Kaznina, N.M., Titov, A.F., Repkina, N.S., Batova, Yu.V. (2019). Effect of zinc excess and low temperature on the IRT1 gene expression in the roots and leaves of barley. Doklady Biochemistry and Biophysics, 48, 264–268. https://doi.org/10.1134/S1607672919040057

Lee, S., A., G. (2009). Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, Cell and Environ-ment, 32, 408–416. https://doi.org/10.1111/j.1365-3040.2009.01935.x

Li, Y., Zhang, Y., Shi, D., Kiu, X., Qin, J, Ge, Q. … Xu, J. (2013). Spatial-temporal analysis of zinc homeostasis reveals the response mechanisms to acute zinc deficiency in Sorghum bicolor. New Phytologist, 200, 1102–1115. https://doi.org/10.1111/nph.12434

Liu, H., Gan, W., Renge, Z., Zhao, P. (2016). Effects of zinc fertilizer rate and application method on photosynthetic characteris-tics and grain yield of summer maize. Journal of Soil Science and Plant Nutrition, 16(2), 550–662. https://doi.org/10.4067/S0718-95162016005000045

Livak, K.J., Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔct method. Methods, 25, 402–408. https://doi.org/10.1006/meth.2001.1262

Palmer, G.M., Guerinot, M.L. (2009). Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology, 5, 333–340. https://doi.org/10.1038/nchembio.166

Pedas, P., Ytting, C. K., Fuglsang, A. T., Jahn, T. P., Schioerring, J. K., Hasted, S. (2008). Manganese efficiency in barley: identifi-cation and characterization of the metal ion transporter HvIRT11[OA]. Plant Physiology, 148, 455–466. https://doi.org/10.1104/pp.108.118851

Romera, F. J., García, M. J., Alcántara, E., Pérez-Vicente, R. (2011). Latest findings about the interplay or auxin, ethylene and nitric oxide in the regulation of Fe deficiency responses by strategy I plants. Plant Signaling and Behavior, 6, 167–170. https://doi.org/10.4161/psb.6.1.14111

Shin, L.-J., Lo, J.-C., Chen, G. H., Callis, J., Fu, H., Yeh, K-C. (2013). IRT1 degradation factor1, a ring E3 ubiquitin ligase, regulates the degradation of iron-regulated transporter1 in Arabidopsis. The Plant Cell, 25, 3039–3051. https://doi.org/10.1105/tpc.113.115212

Suzuki, M., Bashir, K., Inoue, H., Takahashi, M., Nakanishi, H., Nishizawa, N.K. (2012). Accumulation of starch in Zn-deficient rice. Rice, 59, 1–8. https://doi.org/10.1186/1939-8433-5-9

Yamunarani, R., Ramegowda, V., Pavithra, J., Geetha, G., Rajashekar-Reddy, H., Udayakumar, M., Shankar, A. G. (2013). Expression of a rice Zn transporter, OsZIP1, increases Zn concentration in tobacco and finger millet transgenic plants. Plant Biotechnology Reports, 7, 309–319. https://doi.org/10.1007/s11816-012-0264-x




DOI: http://dx.doi.org/10.14720/aas.2021.117.4.1998

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2021

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941