High resistance of Panicum miliaceum L. to phenanthrene toxicity based on growth response and antioxidant system assessment
Abstract
Polycyclic aromatic hydrocarbons are a group of organic pollutants influencing different aspects of plants physiology. Physiological responses associated with the impact of phenanthrene (500, 1000, 1500, 2000 ppm) were analysed on Panicum miliaceum L. Seed germination was delayed in all treatments and 2000 ppm of phenanthrene (PHE) significantly retarded the germination rate (28 %) compared to control. The results revealed after 30 day of cultivation, only 1500 and 2000 ppm of PHE had negative impacts on growth parameters as well as photosynthetic pigment contents. Plants exposed to 500 and 1000 ppm of PHE showed an increase in the growth parameters without any symptoms of toxicity, indicating the high tolerance of seedlings to PHE. The activities of antioxidant enzymes were elevated in treated plants. In higher concentrations, H2O2 content also increased despite a reduction in malondialdehyde content. Furthermore, PHE had no effect on root phenol and shoot flavonoid contents and on shoot and root protein contents. Taken together, only higher concentrations of PHE triggered oxidative stress. It can be concluded PHE was not very toxic to P. miliaceum probably because of higher activity of antioxidant system involving in elimination of produced ROS even in plants treated by PHE higher concentrations.
Keywords
Full Text:
PDFReferences
Afegbua, S. L., & Batty, L. C. (2018). Effect of single and mixed polycyclic aromatic hydrocarbon contamination on plant biomass yield and PAH dissipation during phytoremediation. Environmental Science and Pollution Research, 25(19), 18596-18603. https://doi.org/10.1007/s11356-018-1987-1
Ahammed, G. J., Yuan, H. L., Ogweno, J. O., Zhou, Y. H., Xia, X. J., Mao, W. H., ... & Yu, J. Q. (2012). Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosphere, 86(5), 546-555. https://doi.org/10.1016/j.chemosphere.2011.10.038
Alkio, M., Tabuchi, T. M., Wang, X., & Colon-Carmona, A. (2005). Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. Journal of Experimental Botany, 56(421), 2983-2994. https://doi.org/10.1093/jxb/eri295
Alscher, R. G., Donahue, J. L., & Cramer, C. L. (1997). Reactive oxygen species and antioxidants: relationships in green cells. Physiologia Plantarum, 100(2), 224-233. https://doi.org/10.1111/j.1399-3054.1997.tb04778.x
Boominathan, R., & Doran, P. M. (2002). Ni‐induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New phytologist, 156(2), 205-215. https://doi.org/10.1046/j.1469-8137.2002.00506.x
Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Chance, B., & Maehly, A. C. (1955). [136] Assay of catalases and peroxidases. https://doi.org/10.1002/9780470110171.ch14
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3). https://doi.org/10.38212/2224-6614.2748
Desalme, D., Binet, P., Epron, D., Bernard, N., Gilbert, D., Toussaint, M. L., ... & Chiapusio, G. (2011). Atmospheric phenanthrene pollution modulates carbon allocation in red clover (Trifolium pratense L.). Environmental pollution, 159(10), 2759-2765. https://doi.org/10.1016/j.envpol.2011.05.015
Di Giulio, R. T. (1991). Indices of oxidative stress as biomarkers for environmental contamination. In Aquatic Toxicology and Risk Assessment: Fourteenth Volume. ASTM International. https://doi.org/10.1520/STP23561S
Dong, Y.C., Zheng, D. S. (2006). Crops and their wild relatives in China.
Dupuy, J., Leglize, P., Vincent, Q., Zelko, I., Mustin, C., Ouvrard, S., & Sterckeman, T. (2016). Effect and localization of phenanthrene in maize roots. Chemosphere, 149, 130-136. https://doi.org/10.1016/j.chemosphere.2016.01.102
Dupuy, J., Ouvrard, S., Leglize, P., & Sterckeman, T. (2015). Morphological and physiological responses of maize (Zea mays) exposed to sand contaminated by phenanthrene. Chemosphere, 124, 110-115. https://doi.org/10.1016/j.chemosphere.2014.11.051
Habiyaremye, C., Barth, V., Highet, K., Coffey, T., & Murphy, K. M. (2017). Phenotypic responses of twenty diverse proso millet (Panicum miliaceum L.) accessions to irrigation. Sustainability, 9(3), 389. https://doi.org/10.3390/su9030389
Hamdi, H., Benzarti, S., Manusadžianas, L., Aoyama, I., & Jedidi, N. (2007). Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biology and Biochemistry, 39(8), 1926-1935. https://doi.org/10.1016/j.soilbio.2007.02.008
Harinasut, P., Poonsopa, D., Roengmongkol, K., & Charoensataporn, R. (2003). Salinity effects on antioxidant enzymes in mulberry cultivar. Science Asia, 29(2), 109-113. https://doi.org/10.2306/scienceasia1513-1874.2003.29.109
Hartmut, K. L. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In R. D. Lester Packer (Ed.). Methods in enzymology. New York, NY, Academic Press, pp 350–382. http://dx.doi.org/10.1016/0076-6879(87)48036-1
Henner, P., Schiavon, M., Druelle, V., & Lichtfouse, E. (1999). Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination. Organic geochemistry, 30(8), 963-969. https://doi.org/10.1016/S0146-6380(99)00080-7
Houshani, M., Salehi-Lisar, S. Y., Movafeghi, A., & Motafakkerazad, R. (2019). Growth and antioxidant system responses of maize (Zea mays L.) seedling to different concentration of pyrene in a controlled environment. Acta agriculturae Slovenica, 113(1), 29-39. http://dx.doi.org/10.14720/aas.2019.113.1.03
Hu, X., Wang, J., Lu, P., & Zhang, H. (2009). Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. Journal of Genetics and Genomics, 36(8), 491-500. https://doi.org/10.1016/S1673-8527(08)60139-3
International Agency for Research on Cancer. (1983). Polynuclear aromatic compounds, part 1, chemical, environmental, and experimental data. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man, IARC Scientific Publications, 32, 33-451.
Krzebietke, S. J., Wierzbowska, J., Żarczyński, P. J., Sienkiewicz, S., Bosiacki, M., Markuszewski, B., ... & Mackiewicz-Walec, E. (2018). Content of PAHs in soil of a hazel orchard depending on the method of weed control. Environmental monitoring and assessment, 190(7), 422. https://doi.org/10.1007/s10661-018-6812-2
Kummerová, M., & Kmentová, E. (2004). Photoinduced toxicity of fluoranthene on germination and early development of plant seedling. Chemosphere, 56(4), 387-393. https://doi.org/10.1016/j.chemosphere.2004.01.007
Kummerová, M., Zezulka, Š., Babula, P., & Váňová, L. (2013). Root response in Pisum sativum and Zea mays under fluoranthene stress: morphological and anatomical traits. Chemosphere, 90(2), 665-673. https://doi.org/10.1016/j.chemosphere.2012.09.047
Kummerová, M., Zezulka, Š., Váňová, L., & Fišerová, H. (2012). Effect of organic pollutant treatment on the growth of pea and maize seedlings. Open Life Sciences, 7(1), 159-166. https://doi.org/10.2478/s11535-011-0081-1
Li, J. H., Gao, Y., Wu, S. C., Cheung, K. C., Wang, X. R., & Wong, M. H. (2008). Physiological and biochemical responses of rice (Oryza sativa L.) to phenanthrene and pyrene. International journal of phytoremediation, 10(2), 106-118. https://doi.org/10.1080/15226510801913587
Li, Q., Lu, Y., Shi, Y., Wang, T., Ni, K., Xu, L., ... & Giesy, J. P. (2013). Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings. Journal of Environmental Sciences, 25(9), 1936-1946. https://doi.org/10.1016/S1001-0742(12)60264-2
Liu, H., Weisman, D., Ye, Y. B., Cui, B., Huang, Y. H., Colón-Carmona, A., & Wang, Z. H. (2009). An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Science, 176(3), 375-382. https://doi.org/10.1016/j.plantsci.2008.12.002
Liu, M., Qiao, Z., Zhang, S., Wang, Y., & Lu, P. (2015). Response of broomcorn millet (Panicum miliaceum L.) genotypes from semiarid regions of China to salt stress. The Crop Journal, 3(1), 57-66. https://doi.org/10.1016/j.cj.2014.08.006
Mann, T. (1984). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye-binding. Annals of Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Miliauskas, G., Venskutonis, P. R., & Van Beek, T. A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food chemistry, 85(2), 231-237. https://doi.org/10.1016/j.foodchem.2003.05.007
Mita, S., Murano, N., Akaike, M., & Nakamura, K. (1997). Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for β‐amylase and on the accumulation of anthocyanin that are inducible by sugars. The Plant Journal, 11(4), 841-851. https://doi.org/10.1046/j.1365-313X.1997.11040841.x
Mojiri, A., Ziyang, L., Tajuddin, R. M., Farraji, H., & Alifar, N. (2016). Co-treatment of landfill leachate and municipal wastewater using the ZELIAC/zeolite constructed wetland system. Journal of environmental management, 166, 124-130. https://doi.org/10.1016/j.jenvman.2015.10.020
Na, X., Cao, X., Ma, C., Ma, S., Xu, P., Liu, S., ... & Qiao, Z. (2019). Plant stage, not drought stress, determines the effect of cultivars on bacterial community diversity in the rhizosphere of broomcorn millet (Panicum miliaceum L.). Frontiers in microbiology, 10, 828. https://doi.org/10.3389/fmicb.2019.00828
Obinger, C., Maj, M., Nicholls, P., & Loewen, P. (1997). Activity, Peroxide Compound Formation, and Heme d Synthesis in Escherichia coli HPII Catalase. Archives of Biochemistry and Biophysics, 342(1), 58-67. https://doi.org/10.1006/abbi.1997.9988
Oguntimehin, I., Eissa, F., & Sakugawa, H. (2010). Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum Mill): Fluoranthene mists negatively affected tomato plants. Chemosphere, 78(7), 877-884. Chemosphere 78(7): 877–884. https://doi.org/10.1016/j.chemosphere.2009.11.030
Pogorzelec, M., & Piekarska, K. (2018). Application of semipermeable membrane devices for long-term monitoring of polycyclic aromatic hydrocarbons at various stages of drinking water treatment. Science of The Total Environment, 631, 1431-1439. https://doi.org/10.1016/j.scitotenv.2018.03.105
Pretorius, T. R., Charest, C., Kimpe, L. E., & Blais, J. M. (2018). The accumulation of metals, PAHs and alkyl PAHs in the roots of Echinacea purpurea. PloS one, 13(12), e0208325. https://doi.org/10.1371/journal.pone.0208325
Ramel, F., Birtic, S., Cuiné, S., Triantaphylidès, C., Ravanat, J. L., & Havaux, M. (2012). Chemical quenching of singlet oxygen by carotenoids in plants. Plant physiology, 158(3), 1267-1278. https://doi.org/10.1104/pp.111.182394
Reynoso-Cuevas, L., Gallegos-Martínez, M. E., Cruz-Sosa, F., & Gutiérrez-Rojas, M. (2008). In vitro evaluation of germination and growth of five plant species on medium supplemented with hydrocarbons associated with contaminated soils. Bioresource technology, 99(14), 6379-6385. https://doi.org/10.1016/j.biortech.2007.11.074
Sabir, P., Ashraf, M., & Akram, N. A. (2011). Accession variation for salt tolerance in proso millet (Panicum miliaceum L.) using leaf proline content and activities of some key antioxidant enzymes. Journal of Agronomy and Crop Science, 197(5), 340-347. https://doi.org/10.1111/j.1439-037X.2011.00471.x
Salehi-Lisar, S. Y., & Deljoo, S. (2015). Physiological effect of phenanthrene on Triticum aestivum, He Ha nth us annus and Medicago sativa. EurAsian Journal of BioSciences, 9(1), 29-37. https://doi.org/10.5053/ejobios.2015.9.0.4
Singh-Tomar, R., & Jajoo, A. (2013). Alteration in PS II heterogeneity under the influence of polycyclic aromatic hydrocarbon (fluoranthene) in wheat leaves (Triticum aestivum). Plant Science, 209, 58-63. https://doi.org/10.1016/j.plantsci.2013.04.007
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
Smith, M. J., Lethbridge, G., & Burns, R. G. (1997). Bioavailability and biodegradation of polycyclic aromatic hydrocarbons in soils. FEMS Microbiology Letters, 152(1), 141-147. https://doi.org/10.1111/j.1574-6968.1997.tb10420.x
Somtrakoon, K., & Chouychai, W. (2013). Phytotoxicity of single and combined polycyclic aromatic hydrocarbons toward economic crops. Russian journal of plant physiology, 60(1), 139-148. https://doi.org/10.1134/S1021443712060155
Sverdrup, L. E., Krogh, P. H., Nielsen, T., Kjær, C., & Stenersen, J. (2003). Toxicity of eight polycyclic aromatic compounds to red clover (Trifolium pratense), ryegrass (Lolium perenne), and mustard (Sinapsis alba). Chemosphere, 53(8), 993-1003. https://doi.org/10.1016/S0045-6535(03)00584-8
Tian, L., Yin, S., Ma, Y., Kang, H., Zhang, X., Tan, H., ... & Liu, C. (2019). Impact factor assessment of the uptake and accumulation of polycyclic aromatic hydrocarbons by plant leaves: Morphological characteristics have the greatest impact. Science of the Total Environment, 652, 1149-1155. https://doi.org/10.1016/j.scitotenv.2018.10.357
Tomar, R. S., & Jajoo, A. (2014). Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum). Ecotoxicology and Environmental Safety, 109, 110-115. https://doi.org/10.1016/j.ecoenv.2014.08.009
Wei, H., Song, S., Tian, H., & Liu, T. (2014). Effects of phenanthrene on seed germination and some physiological activities of wheat seedling. Comptes Rendus Biologies, 337(2), 95-100. https://doi.org/10.1016/j.crvi.2013.11.005
Wiłkomirski, B., Jabbarov, Z. A., Abdrakhmanov, T. A., Vokhidova, M. B., Jabborov, B. T., Fakhrutdinova, M. F., ... & Abdullayeva, Y. D. (2018). Polycyclic Aromatic Hydrocarbons (PAHs) in Natural and Anthropogenically Modified Soils (A Review). Biogeosystem Technique, (5), 229-243. https://doi.org/10.13187/bgt.2018.2.229
Wilcke, W., Müller, S., Kanchanakool, N., Niamskul, C., & Zech, W. (1999). Polycyclic aromatic hydrocarbons in hydromorphic soils of the tropical metropolis Bangkok. Geoderma, 91(3-4), 297-309. https://doi.org/10.1016/S0016-7061(99)00012-9
Winterbourn, C. C., McGrath, B. M., & Carrell, R. W. (1976). Reactions involving superoxide and normal and unstable haemoglobins. Biochemical Journal, 155(3), 493-502. https://doi.org/10.1042/bj1550493
DOI: http://dx.doi.org/10.14720/aas.2021.117.2.1987
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Sarieh Tarigholizadeh, Rouhollah Motafakkerazad, Seyed Yahya Salehi-Lisar, Elham Mohajel Kazemi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.
eISSN 1854-1941